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Abstract

We present two novel parallel algorithms for rapidly constructing bounding volume hierarchies on manycore

GPUs. The first uses a linear ordering derived from spatial Morton codes to build hierarchies extremely quickly

and with high parallel scalability. The second is a top-down approach that uses the surface area heuristic (SAH)

to build hierarchies optimized for fast ray tracing. Both algorithms are combined into a hybrid algorithm that

removes existing bottlenecks in the algorithm for GPU construction performance and scalability leading to sig-

nificantly decreased build time. The resulting hierarchies are close in to optimized SAH hierarchies, but the con-

struction process is substantially faster, leading to a significant net benefit when both construction and traversal

cost are accounted for. Our preliminary results show that current GPU architectures can compete with CPU im-

plementations of hierarchy construction running on multicore systems. In practice, we can construct hierarchies

of models with up to several million triangles and use them for fast ray tracing or other applications.

1. Introduction

Bounding volume hierarchies (BVHs) are widely used to ac-
celerate intersection computations for ray tracing, collision
detection, visibility culling, and similar applications. There
is an extensive literature on fast computation of BVHs op-
timized for these applications. Our overarching goal is to
design real-time hierarchy construction methods for scenes
with non-rigid models undergoing deformations or topologi-
cal changes, thus enabling interactive applications to process
such content.

As parallelism has become the main force driving increased
processor performance, hierarchy construction methods
must be parallel if they are to scale well on future architec-
tures. However, nearly all prior work on BVH construction
has focused on purely serial construction algorithms. In this
paper, we develop efficient parallel algorithms for construct-
ing BVHs on manycore processors supporting thousands of
concurrent threads. Our approach is to design algorithms that
expose substantial amounts of fine-grained parallelism, thus
fully exploiting massively multi-threaded processors.

The first contribution of this paper is a novel algorithm us-
ing spatial Morton codes to reduce the BVH construction
problem to a simple sorting problem. This Linear Bounding
Volume Hierarchy (LBVH) algorithm is focused on mini-

mizing the cost of construction, while still producing BVHs
of good quality. Our second contribution is a breadth-first
queue-based algorithm for constructing BVHs optimized for
ray tracing using the Surface Area Heuristic (SAH). This
incorporates a novel and very fast method for performing
the initial splits for the hierarchy in parallel, thus remov-
ing many of the existing bottlenecks in the construction al-
gorithm. The SAH construction is best suited for the case
where traversal cost is at a premium and construction cost
is relatively unimportant; our experiments demonstrate that
LBVH is over an order of magnitude faster than SAH con-
struction, but can reduce ray tracing performance by up to
85% in some cases. Finally, our third contribution is a hy-
brid construction algorithm that builds the highest levels of
the tree with the LBVH algorithm and builds the rest with
the SAH algorithm. We demonstrate that this attains roughly
half the construction speed of LBVH while retaining essen-
tially all the quality of the pure SAH-based construction.

To explore the performance of our algorithms, we have im-
plemented our algorithms in CUDA [NBGS08] and bench-
marked their performance on an NVIDIA GeForce 280 GTX
GPU. In practice, our techniques can compute BVHs com-
posed of axis-aligned bounding boxes (AABBs) on models
with hundreds of thousands triangles in less than 100 mil-
liseconds.
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Figure 1: Flamenco benchmark: Screenshots from dynamic

scene with 49K triangles. Our algorithm can build the opti-

mized BVH on a NVIDIA 280 GTX GPU in 25ms per frame,

allowing full real-time ray tracing at 11 fps at 10242 pixels.

2. Background

Bounding volume hierarchies (BVHs) have been extensively
used for ray tracing [RW80] and collision detection [Eri04].
In interactive ray tracing, object hierarchy based approaches
have recently regained interest with the adaptation of ray
packet techniques from kd-tree traversal on both the CPU
[GM03, WBS07, LYTM06, WK06] and GPU [GPSS07].
While earlier approaches used simple update techniques to
support dynamic data sets, fast construction techniques for
rebuilding BVHs were introduced as well [WK06] and par-
allel CPU implementations have been developed [Wal07].

2.1. Parallel computing model

We focus on implementing our algorithms using the CUDA
programming model [NBGS08] and running them on mod-
ern NVIDIA GPUs [LNOM08]. A few basic attributes of
this platform are relevant to our algorithmic discussions.
CUDA programs consist of a sequential host program that
can initiate parallel kernels on the GPU device. A given ker-
nel executes a single program across many parallel threads.
These threads are decomposed into thread blocks; threads
within a given block may efficiently synchronize with each
and have shared access to per-block on-chip memory. Con-
sequently, three design principles are crucial for achieving
scalable algorithms: (1) decomposing work into chunks suit-
able to be processed by each thread block, (2) exploiting
the on-chip memory given to each block, and (3) expos-
ing enough fine-grained parallelism to exploit the massively
multi-threaded GPU hardware.

To analyze the complexity of parallel algorithms, we adopt
the standard approach of analyzing both the work and depth

complexity. Briefly, if a given computation is expressed as
a dependence graph of parallel tasks, then its work com-
plexity is the total amount of work performed by all tasks
and its depth complexity is the length of the critical path
in the graph. It is well-known that serial BVH construction
has the same O(n logn) complexity as comparison-based
sort. Therefore, an asymptotically efficient parallel BVH

construction algorithm should perform at most O(n logn)
with a depth of at most O(logn), which are the bounds on
comparison-based parallel sort.

2.2. GPU traversal and construction

The massive parallelism of programmable GPUs naturally
lends itself to inherently parallel problems such as ray
tracing. Early implementations [CHH02, PBMH02] were
constrained by architectural limitations, but modern ap-
proaches use hierarchical acceleration structures such as
k-d trees [FS05, HSHH07] and BVHs [TS05, GPSS07].
While these approaches essentially implement techniques
similar to those used in CPU ray tracing, other special-
ized techniques for stack traversal have also been devel-
oped [HSHH07, PGSS07]. Some support for scenes with
deformable or dynamic geometry was introduced with ge-
ometry images [CHCH06] and a ray hierarchy based ap-
proach [RAH07]. Going beyond ray tracing, similar hierar-
chies have also been used for GPU-based collision detec-
tion [Eri04, GKJ∗05].

Most of these approaches have tended to rely on serial algo-
rithms running on the CPU to construct the necessary hier-
archical acceleration structures. While once a necessary re-
striction due to architectural limitations, modern GPUs pro-
vide all the facilities necessary to implement hierarchy con-
struction directly. Doing so should provide a strong benefit,
as building structures directly on the GPU avoids the need
for the relatively expensive latency introduced by frequently
copying data structures between CPU and GPU memory
spaces.

There has been some initial work on constructing hierar-
chies on multi-core CPU processors, although gains appear
to decrease sharply even on CPUs with a low number of
cores [PGSS06], mainly due to memory bandwidth limita-
tions [Wal07]. Very recently, initial work has been shown
on constructing spatial hierarchies on GPUs [ZHWG08,
ZGHG08, AGCA08]. We present a more detailed compar-
ison in section 6.

3. LBVH hierarchy construction

The simplest approach to parallelizing BVH construction is
to reduce it to a sorting problem. This is the approach taken
by our LBVH construction which begins by ordering all n

input primitives along a space-filling curve, thus “lineariz-
ing” them into a single fixed sequence of length n. Given
this sequence, we construct the tree by recursively splitting
intervals of this sequence and creating corresponding nodes.
The root corresponds to the interval [0,n), its children to a
partition [0,m), [m,n) of the root interval, and so on. Thus
every node in the BVH will correspond to a range of indices
[li,ri) in the sequence of primitives.
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Figure 2: Example 2-D Morton code ordering of triangles

with the first two levels of the hierarchy. Blue and red bits

indicate x and y axes, respectively.

3.1. Tree Construction using Morton Codes

We use the well-known space-filling Morton curve—also
known as the Lebesgue and z-order curve—for ordering
primitives. This is because the Morton index code, which
determines a primitive’s order along the curve, can be com-
puted directly from its geometric coordinates, whereas other
space-filling curves require more expensive constructions to
determine the ordering of primitives.

We assume that each input primitive is represented by an
AABB and that the enclosing AABB of the entire input
geometry is known. We take the barycenter of each prim-
itive AABB as its representative point. By constructing a
2k
×2k

×2k lattice within the enclosing AABB, we can quan-
tize each of the 3 coordinates of the representative points
into k-bit integers. The 3k-bit Morton code for a point is
constructed by interleaving the successive bits of these quan-
tized coordinates. Figure 2 shows a 2-D example of this con-
struction. Sorting the representative points in increasing or-
der of their Morton codes will lay out these points in or-
der along a Morton curve. Thus, it will also order the corre-
sponding primitives in a spatially coherent way. Because of
this, sorting geometric primitives according to their Morton
code has been used for improving cache coherence in large
geometric databases [PF01].

Once we have assigned a Morton code to every primitive, we
can easily construct a BVH by bucketing primitives based
on the bits of their Morton codes. We construct the first level
split by examining the most significant bit of all codes, plac-
ing those with 0 and 1 bits in the first and second child, re-
spectively, of the root. See Figure 2 for an example. We ap-
ply this bucketing procedure recursively in each child, look-
ing at the second most significant bit. In each recursive step,
we look at the next bit in the Morton code until all bits are
consumed.

Note that this recursive partitioning is equivalent to the
steps of an most-significant-bit radix-2 sort using the Mor-
ton codes as the keys. By generalizing this radix-2 algorithm
to a radix-b algorithm—one which looks at log2 b bits at a
time rather than 1—we can also trivially produce trees with
branching factor 2b rather than simply binary trees. We note
that for the radix-8 case, the recursive decomposition based
on Morton codes is equivalent to an octree decomposition of
the enclosing AABB.

3.2. Data-Parallel LBVH Construction

One of the main virtues of the LBVH construction is that it
is inherently parallel. As noted above, the correct ordering
of primitives can be computed simply by sorting them with
their Morton codes as the sort keys. Furthermore, the Morton
codes themselves encode all the necessary information about
where in the tree a particular primitive will go.

Given a list of primitives, each with its associated Mor-
ton code, we sort them using an efficient parallel radix
sort [SHG08]. Since the Morton codes may often have only
zeroes in the most significant bits, it is more efficient to
use radix-sort by least significant bit here. In the sorted se-
quence, consider two adjacent primitives at positions i and
i +1. The bits of the Morton code uniquely encode the path
that a point will take from the root to the leaf that contains
only the primitive. Thus, we can determine their least com-
mon ancestor—the node farthest from the root whose sub-
tree contains both—by determining the most significant bit
in which their Morton codes differ. The bits above this point,
shared by both primitives, uniquely encode the least com-
mon ancestor node.

To construct the LBVH from the sorted primitive sequence,
we need to determine the interval dividing lines at which
nodes begin and end. In other words, for primitives i and
i+1, we want to know at what levels (if any) they should be
split into separate nodes. We can construct these “split lists”
for each adjacent pair in parallel, using the Morton codes.
As we have just observed, the levels of the tree at which
these two primitives are in separate sub-trees are those levels
corresponding to the bit after which their Morton codes are
no longer identical. If they first differ in bit position h, then
we record the fact that a split must exist between them at
each level from h to 3k, since 3k is the maximum depth of the
tree. We record this “split list” as a list of pairs [(i,h),(i,h+
1), . . . ,(i,3k)] containing the index of the triangle and the
levels of the splits between the primitives. If we perform this
computation for each adjacent pair and concatenate all such
lists, we get a list of all splits in the tree sorted by the index
of the triangles in the linear Morton order. Once we have
this list, we resort it by level (i.e., the second item of each
pair). Now we have a list where, for each level, we have a
list of all the splits that should occur on this level. This tells
us precisely what we want to know, namely the intervals in
the triangle list spanned by the various nodes at this level.
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One unwanted side effect of this parallel construction is that
it can create chains of singleton nodes in the tree. To deal
with this we must simply add an additional post-process that
starts at the leaves of the tree and walks up to the root, rolling
up singleton chains in the process.

As a final step, the representation of the BVH as splits by
level needs to be converted in a form that is useable as a top-
down hierarchy, mainly by computing the correct bounding
boxes for each node, which is a similar process to a regu-
lar BVH refitting step and can be achieved in linear time.
In addition, we also compute the explicit child pointers for
top-down traversal which follow directly from the interval
information in the splits.

Finally, note that both sorts required by the parallel LBVH
construction can be implemented using a radix sort algo-
rithm. The asymptotic work complexity of the LBVH con-
struction is thus O(n). Its asymptotic depth complexity is the
same as parallel scan, which is O(logn). It is thus efficient,
as it performs asymptotically the same amount of work as the
corresponding sequential sort and has a logarithmic depth.

4. SAH hierarchy construction

The main disadvantage of the LBVH algorithm described in
the previous section is that it does not build hierarchies that
are optimized for performance in ray tracing since it uni-
formly subdivides space at the median. We now present an
algorithm for GPU object hierarchy construction using the
surface area heuristic (SAH). Before presenting the actual
algorithm, we will first summarize how state-of-the-art im-
plementations on the CPU build SAH-optimized hierarchies.

4.1. SAH hierarchy construction

The surface area heuristic [GS87,MB90,Hav00] method for
building hierarchies can be applied to many types of hierar-
chical acceleration structures – among them object and spa-
tial hierarchies – since it has been shown to be a good in-
dicator of expected ray intersections. The time complexity
for top-down construction of a hierarchy for n triangles is
O(n logn) due to the equivalence to sorting, and research has
shown [WH06] that SAH optimized construction can also be
achieved in the same bound. Top-down builders proceed by
recursively splitting the set of geometric primitives — usu-
ally into two parts per step, resulting in a binary tree. The
manner in which the split is performed can have a large im-
pact on the performance of a ray tracer or other application
using the BVH. The SAH provides a cost function that al-
lows to evaluate all possible split positions at a node and
then pick the one with the lowest cost. Computing the cost
function for each possible split position can be costly and
requires a full sort, although a careful implementation needs
to perform this sort only once for each of the 3 axes and then
reuse the information [WH06]. Recently, new approximate

SAH approaches have moved towards only sampling sev-
eral split positions per split and basing the decision on this
subset of split positions [PGSS06, HMS06, Wal07]. Results
have shown that this only has a negligible impact on render-
ing performance, but usually is an order of magnitude faster
during construction.

Other recent work has concentrated on parallel construction
on multi-core CPUs in order to achieve interactive per-frame
hierarchy rebuilds [PGSS06, SSK07, Wal07]. However, un-
like ray tracing itself, hierarchy construction does not scale
well with the number of processors. In particular, the main
issues are that the first steps of the top-down algorithm
for construction are not easily parallelized, and more im-
portantly that the implementation may become bandwidth-
limited. Since memory bandwidth has traditionally not in-
creased by Moore’s law like computing power, this remains
a serious issue.

4.2. GPU SAH construction

The main challenge for a GPU algorithm for hierarchy con-
struction is that it has to be sufficiently parallel so as to ex-
ploit the computational power of the processors. In a top-
down construction algorithm, there are two main ways to
introduce parallelism: a) process multiple splits in parallel
and b) parallelize an actual split operation. In our approach,
we use multiple cores to run as many node splits in parallel
as possible and then use the data parallel computation units
in the processors to accelerate the SAH evaluation as well as
the actual split operation. In the further discussion we will
use some terms and common parallel programming primi-
tives from the PRAM model that can be easily implemented
on vector architectures such as GPUs.

4.2.1. Breadth-first construction using work queues

We now present our algorithm for parallelizing the individ-
ual splits across all the cores. During top-down construction,
each split results in new nodes that still need to be processed,
i.e. split as well. Since each of the splits can be processed to-
tally independently, processing all the open splits in parallel
on multiple cores is an easy way to speed up construction.
The simplest approach to manage all this work is to intro-
duce a queue that stores all the open splits such that each
processor can fetch work whenever it is finished working on
a node, as well as put new splits on the work queue when fin-
ishing up. However, even though current GPU architectures
support atomic operations that would make global synchro-
nization possible, the problem is that the same architectures
do not provide a memory consistency model that would en-
sure writes to the queue are seen in the correct order by other
processors. Thus, implementing a global work queue is cur-
rently not practical yet. Instead, we opt for an iterative ap-
proach that processes all the currently open splits in parallel
and writes out new splits, but then performs a queue mainte-
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Figure 3: Work queue construction: By using two work

queues, we can run all active splits in parallel. Since the

split kernel may not output new splits, a compaction step af-

ter each split level removes empty space in the queue and

allows it to be used in the next step.

nance step in between to provide a valid queue for the next
step (similar in spirit to [Hor05]).

In a binary tree, each split can result in either 0, 1 or 2 new
open splits as a result. Thus, if we have m open splits, we
only need a work queue of at most size 2m to hold all poten-
tial new splits. By using two work queues, one as an input
and one as an output, we can perform parallel splits without
any explicit coordination between them. In our algorithm,
each block i reads in its split item from the input queue and
processes it (as described in the next section) and then either
writes out new splits or a null split to the output queue at
positions 2i and 2i + 1 (also see Fig. 3). After that step, the
output work queue may have several null splits that need to
be eliminated. Therefore, we run a compaction kernel (such
as described in [SHG08]) on the queue and write the result
into the input queue. We again run the split algorithm on the
new input queue as long as there are still active splits left.
Note that this means that we generate and process all the
nodes in the tree in breadth-first order, whereas recursive or
stack-based CPU approaches typically proceed in depth-first
order (Fig. 3). Note that this form of work organization does
not add work overhead and the the overall work complexity
is still O(n logn).

4.2.2. Data-Parallel SAH split

In general, performing a SAH split for an object hierarchy
consists of two steps:

1. Determine the best split position by evaluating the SAH

2. Reorder the primitives (or the indices to the primitives)

such that the order in the global list corresponds to the
new split

Note that unlike spatial partitioning approaches such as kd-
trees each primitive can only be referenced on one side of
the split (commonly determined by the location of the cen-
troid of the primitive), which means that the reordering can
be performed in-place and no additional memory is needed.
All of these steps can be performed by exploiting data par-
allelism and using common parallel operations such as re-
ductions and prefix sums, and each split is executed on one
core.

We perform approximate SAH computation as described
above and generate k uniformly sampled split candidates for
each of the three axes, and then use 3k threads so that we
test all the samples in parallel. Note that when k is larger or
equal to the number of primitives in the split, we can instead
use the positions of the primitives as the split candidates, in
which case the algorithm produces exactly the same result as
the full SAH evaluation. The algorithm loads each primitive
in the split in turn while each thread tests its position in ref-
erence to its split position and updates the SAH information
(such as bounding boxes for the left and right node) accord-
ingly. Once all primitives have been tested, each thread com-
putes the SAH cost for its split candidate. Finally, a parallel
reduction using the minimum operator finds the split candi-
date sample with the lowest cost. We also test the SAH cost
for not splitting the current node here and compare it to the
computed minimal split cost. If it is lower, then we abort the
split operation and make the node a leaf in the hierarchy.

Given the split coordinate as determined by the previous
step, our algorithm then needs to sort the primitives into ei-
ther the left or the right child node. To avoid copying the
geometry information, we only reorder the indices referenc-
ing the primitives instead. To parallelize this reordering step,
we go over all the indices in chunks of a size equal to the
number of threads in the block. For each chunk, each thread
reads in the index and set a flag to 1 if the respective prim-
itive is to the left or 0 if on the right. We then perform a
parallel prefix sum over the flags. Based on that, each thread
can determine the new position to store its index. Finally, we
store the bounding box information computed during SAH
computation in both the child nodes and save back the new
split information to the output split list for the next step if
there is more than one primitive left in the respective node.

4.2.3. Small split optimizations

The algorithm as described above generates a hierarchy
practically identical in quality to CPU-based approximate
SAH techniques (see the results section). In practice, we can
efficiently use more samples due to high data parallelism and
the SAH quality may be even better since the main change
has been to reorganize the split operation such that it uses
parallelism at every stage. Fig. 4 a) illustrates the perfor-
mance characteristics of the algorithm by showing the time
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Figure 4: Construction timings per level: In order to evaluate our SAH construction algorithm, we show the time taken to run

the split as well as compaction kernels for the 69K Bunny model per level of the tree, starting with the one split on level 1. We

also show how many splits are active at any level. Left: normal construction algorithm. Right: construction with small split

kernel as described in the text.

spent during construction by level of the split. There are two
main bottlenecks in the algorithm: similar to CPU imple-
mentations, the initial splits at the top levels of the hierar-
chy are slow due to lack of processor parallelism and large
numbers of very small splits at the end. All further splits
are much faster even though there is much more work done
per level because computational resources are more fully uti-
lized and processors can hide memory latency by switch-
ing between active tasks. We present an improved scheme
to improve the parallelism at the top levels in section 4.3,
but we can also improve on the performance at the lower
levels of the hierarchy. The main sources of overhead here
are a) higher compaction costs since a high number of splits
are generated during each step and b) low vector utilization
due to only processing a few primitives per split. There is
also some constant administrative overhead during each op-
eration for reading in information about the split etc. that
becomes more significant as the actual computational inten-
sity decreases. We address these issues by using a different
split kernel for all splits with sizes below a specified thresh-
old and modify the compaction kernel such that these splits
are automatically filtered from the main work queue into a
small split queue. Once all the normal splits are performed,
we can run the small split kernel on all the elements in that
queue once.

The main idea about the new split kernel is to use each pro-
cessor’s local memory to maintain a local work queue for all
the splits in the sub-tree defined by the input split, as well
as to keep all the geometric primitives in the sub-tree in lo-
cal memory as well. Since local memory is very fast, we can
then run the complete sub-tree’s construction entirely with-
out waiting for memory accesses. Essentially, we are using
this memory as an explicitly managed cache to reduce the
memory bandwidth needed for construction. In addition, we
use as few threads as possible in the kernel to maximize
utilization of the vector operations. The threshold value of
primitives for a split to be "small" depends on how much
geometry data can be fit into local memory, i.e. the cache
size. In our case, we have set both the thread count as well

as the threshold to 32, which for our GPU architecture is
the effective SIMD width and will also fill up most of local
memory. Fig. 4 b) shows the impact of introducing this split
kernel. As the normal construction is run, all splits smaller
than the threshold are removed from the main work queue, so
the number of splits falls much quicker than previously. At
the very last split step, the small split kernel is invoked and
complete processes all the remaining sub-trees in one run.
Overall, we have found that this leads to a 15-20% speedup
in our test cases due to practically full utilization of the com-
putational resources and reduced overhead for queue com-
paction.

4.3. Hybrid GPU construction algorithm

It is also possible to combine both algorithms described in
this paper into a hybrid builder. As was mentioned, the main
bottleneck in the SAH construction algorithm is lack of par-
allelism in the initial splits when most processors are idle.
The LBVH algorithm with radix sort gives us the possibil-
ity of using only a subset of the bits in the Morton code. In
this case, our algorithm builds a very shallow hierarchy with
large numbers of primitives at the leafs. We can then treat
all the leafs in that hierarchy as still active splits and pro-
cess them in parallel with the SAH construction algorithm.
Essentially, this is similar to the bounding interval hierar-
chy [WK06] (BIH) and grid-assisted [Wal07] build methods,
but in a highly parallel approach. Overall, this combines the
speed and scalability of the LBVH algorithm with the ray
tracing performance optimizations in the SAH algorithm.

5. Results and Analysis

We now highlight results from the algorithms described in
the previous sections on several benchmark cases and sce-
narios. All algorithms are run on a Intel Xeon X5355 system
at 2.66GHz running Microsoft Windows XP with a NVIDIA
Geforce 280 GTX graphics card with 1 GB of memory and
were implemented using the NVIDIA CUDA programming
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Model Tris CPU SAH GPU SAH LBVH Hybrid Parallel SAH [Wal07] Full SAH [Wal07]

Flamenco 49K 144ms 85ms 9.8ms 17ms n/a n/a
30fps/99% 30.3fps/100% 12.4fps/41% 29.9fps/99% n/a 100%

Sibenik 82K 231ms 144ms 10ms 30ms n/a n/a
21.4fps/97% 21.7fps/98% 3.5fps/16% 21.4fps/97% n/a 100%

Fairy 174K 661ms 488ms 10.3ms 124ms 21ms 860ms
11.5fps/98% 21.7fps/100% 1.8fps/15% 11.6fps/99% 93% 100%

Bunny/Dragon 252K 842ms 403ms 17ms 66ms 20ms 1160ms
7.8fps/100% 7.75fps/100% 7.3fps/94% 7.6fps/98% 98% 100%

Conference 284K 819ms 477ms 19ms 105ms 26ms 1320ms
24.4fps/91% 24.5fps/91% 6.7fps/25% 22.9fps/85% 86% 100%

Soda Hall 1.5M 6176ms 2390ms 66ms 445ms n/a n/a
20.8fps/98% 21.4fps/101% 3fps/14% 20.7fps/98% n/a 100%

Table 1: Construction timings and hierarchy quality: First row for each scene: Timings (in ms) for complete hierarchy con-

struction. Second row: relative and absolute ray tracing performance (in fps) on our GPU ray tracer compared to full SAH

solution at 10242 resolution and primary visbility only. CPU SAH is our non-optimized approximate SAH implementation using

just one core, GPU SAH is the algorithm as presented in section 4.2 and Hybrid the combined algorithm as presented in section

4.3. The parallel and full SAH are both from the grid-BVH build in [Wal07] and were generated on 8 and 1 core of an Intel

Xeon system at 2.6 GHz, respectively.

Figure 5: Benchmark models: Our benchmark scenes used to generate results. From left to right: Sibenik cathedral (80K tris),

Bunny/Dragon animation (252K tris), Conference room (284K tris), Soda Hall (2M tris).

language [NBGS08]. We use several benchmark scenes cho-
sen to both allow comparison to other published approaches
as well as to cover several different model characteristics
such as architectural and CAD scenes as well as scanned
models (see Fig. 5). Note that all benchmark timings cover
the full construction process starting with building the ini-
tial bounding boxes, but do not include any CPU-GPU copy
of geometry. In our benchmark results for the hybrid algo-
rithm, we used the LBVH algorithm for performing the first
6 levels of splits before switching to SAH construction. All
performance results and images in the paper were produced
with a BVH-based ray tracer running on the GPU. We im-
plemented a relatively simple and unoptimized packet-based
BVH ray tracer similar to [GPSS07] in CUDA and tested
it on our benchmark scenes while rebuilding the hierarchy
for each frame. In combination with the hierarchy construc-
tion, this allows interactive ray tracing of arbitrary dynamic
scenes on the GPU.

To justify both the approximate SAH building algorithm as
well as the hybrid approach, we first compare relative ren-
dering speed of all the algorithms presented in this paper

to a hierarchy built on the CPU with a full SAH construc-
tion algorithm such as described in [WBS07]. Rendering
is performed using a standard CPU BVH ray tracer using
ray packets [LYTM06, WBS07]. The results listed in table
1 demonstrate that for most scenes the approximate SAH
has close to no impact compared to a full SAH build and
that even the hybrid build is very close to the reference re-
sults. This backs results of similar splitting approaches in
[WK06,Wal07]. Note that in some cases the approximate or
hybrid algorithm is in fact faster than the reference imple-
mentation. The SAH is only a local heuristic and thus it is
possible that a split that is non-optimal in the SAH sense may
still result in better performance in the actual ray tracer. The
efficiency of the LBVH construction is highly scene depen-
dent. It can provide adequate quality for scenes with evenly
distributed geometry such as the Dragon/Bunny model, but
for architectural and CAD scenes the performance is clearly
inferior. Because it uses a fixed number of bits per axis, its
quality can degrade when very small details exist in a large
environment (the classic teapot in stadiumscenario). Thus,
the Fairy scene (benchmark 3 in Table 1) with a complex
model in the middle of a less complex environment is an
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example of this problem. In the hybrid algorithm, it is al-
ways possible to limit the impact by limiting the number
of splits performed by LBVH. Furthermore, this problem is
mitigated if the scene has some pre-existing structure, say
from a scene graph that can assist the construction proce-
dure. Having primitives with highly varying sizes can also
have an impact on performance here since the classification
according to Morton code does not take this into account.
However, this is usually also a problem for other construc-
tion algorithms and the common solution would be to sub-
divide large primitives [EG07] before construction. Table 1
also shows timings for the actual construction with our dif-
ferent approaches and also lists published numbers from a
fast parallel CPU BVH builder [Wal07] as well as our non-
parallel CPU implementation of a sampling based SAH ap-
proach (similar to [HMS06, Wal07]) using 8 samples/split.
Note that since the GPU ray tracer uses a higher number of
samples (in our case 64), it can provide slightly better hierar-
chy quality compared to the CPU solution. The full LBVH is
the fastest builder, but is dominated by kernel call and other
overhead for small models.

Analysis: Current GPU architectures have several features
that would make them suitable for hierarchy construction.
First, thanks to special graphics memory they have signif-
icantly higher memory bandwidth. At the same time, even
though the individual processing units do not have a gen-
eral cache, they have explicitly managed fast local memory.
Thus, if data for the current computation can be loaded from
main memory and held in local memory, memory access and
bandwidth are very fast. GPUs also have very high avail-
able parallelism both in terms of independent processors as
well as data parallel units. However, exploiting this paral-
lelism in the construction algorithm now becomes an harder
challenge. Unlike the thread parallelism in CPU implemen-
tations, using data parallelism is both more important as well
as difficult due to higher SIMD width.

The memory footprint of our construction algorithm is rela-
tively low since object hierarchy construction does not re-
quire temporary memory and all elements can just be re-
ordered in-place. We can size the main work queues conser-
vatively since for n primitives there can be at most n/2 splits
active at a time. Otherwise, the algorithm stores an AABB
per primitive, the main index list as well as an array for
holding the BVH nodes (which can be conservatively sized
at the theoretical maximum of 2n− 1 nodes.) Overall, our
algorithm uses up to 113 bytes/triangle during construction
including the BVH, assuming the worst case of one triangle
per leaf. This allows construction of hierarchies for multi-
million triangle models on current GPUs without problems.

We also analyzed the current bottlenecks in our construc-
tion algorithms. Figure 6 shows the impact of indepen-
dently changing core (i.e. processing) and memory clock
for our construction methods. It is obvious that all three are
currently bound by computation, and both the hybrid and
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Figure 6: Bottleneck analysis: Relative performance of the

three construction algorithms when modifying the core pro-

cessor clock (top) and the memory clock (bottom).

SAH algorithms are not limited by memory bandwidth. The
LBVH algorithm shows the highest dependence on memory
speed: since GPU sort is known [GGKM06] to be bandwidth
limited and construction must have the same lower bounds
as sorting, we take this as a sign that the LBVH build is close
to the limit of achievable scalability. Overall, this means that
the construction algorithms will very likely scale well with
added computational power in future architectures.

We also analyzed where time is spent in the construction.
Figure 7 shows a break-up of relative time for each of our
benchmark scenes into several components (as described in
more detail in section 4): SAH split is the time for finding
the optimal subdivision, Reorder is the time spent reorder-
ing the triangles according to the split, Compaction consists
of the time for compacting and maintaining the work queues
between splits and LBVH is the initial split time in the hy-
brid construction (for 6 levels). The remaining time (Rest)
is spent reading in and writing back BVH node information,
setting up splits and otherwise joining the rest of the steps
together. Note that we did not include the time for comput-
ing the AABBs and Morton codes here as it makes up far
less than 1% of the total time in all benchmarks. Overall,
the results show that the full SAH build is clearly domi-
nated by the cost of evaluating the SAH split information,
while the hybrid build is more balanced. Computing the ini-
tial splits using the LBVH algorithm only takes a relatively
small amount of time, but reduces both the overall construc-
tion time as well as some of the cost in work queue manage-
ment.
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Figure 7: Time spent: Split-up of the total time spent in construction into each part of the algorithm. Left: Full SAH build.

Right: Hybrid build. The "rest" times consist of all operations not explicitly in other parts, such as reading and writing BVH

nodes and setting up all the other components.

Comparison: There has been some concurrent work
on GPU hierarchy construction focused on building kd-
trees [ZHWG08]. Our approach is similar in the organiza-
tion of the splits by using a work queue, but the authors use
spatial median splits after sorting primitives into chunks in
order to speed up the top-level split computation. Despite the
similarities in both approaches, we would like to point out
some differences in BVH and kd-tree construction. In partic-
ular, the memory overhead in object hierarchy construction
is very small, whereas dynamic allocation in kd-tree con-
struction so far limits the GPU implementation — the cur-
rent kd-tree algorithm would need about 1GB of memory to
construct the kd-tree for a model with one million triangles,
whereas we could support about ten times that. On the other
hand, BVH splits are intrinsically more computationally in-
tensive as the split kernel has to compute bounding boxes for
each split candidate whereas kd-tree splits are directly given
by the parent’s bounding box and the split plane. Thus, the
main inner loop need to load 3 times the data (all 6 bounds
as opposed to 2) and a corresponding increase in computa-
tion. This difference may explain that our construction times
are slightly higher than the kd-tree numbers in [ZHWG08]
for the Fairy model (77ms compared to 124ms in our hybrid
approach.)

A similar approach to our linear BVH construction has also
been proposed, but for octrees of points [ZGHG08]. The au-
thors use the Morton order in combination with a sort to
build the hierarchy. However, the problem of building a spa-
tial hierarchy on points is different than building an object
hierarchy on AABBs as in our case, so the rest of the al-
gorithm differs. We also observe that even though our al-
gorithm has to perform more work during construction, our
implementation is faster, presumably due to more efficient
sort.

6. Conclusion and future work

In conclusion, we have presented algorithms for performing
fast construction of optimized object hierarchies on current
GPUs. We have shown that standard SAH techniques can be

implemented while exploiting both processor as well as data
parallelism with a reorganization of the construction pro-
cess. We have also introduced a novel construction scheme
based on fast radix sort that can be used both as a standalone
builder as well as part of the SAH construction process and
we show how the combination leads to the fastest implemen-
tation. We believe that our approach will also be practical on
different highly parallel processors such as the CELL pro-
cessor and on future upcoming architectures like Larrabee
with a high number of cores and increased data parallelism.
On current GPU architectures, there are still some limita-
tions that could be removed in the future for better perfor-
mance. For one, relatively static scheduling and lack of syn-
chronization currently prevents the implementation of a truly
shared work queue in main memory which would remove
most of the overhead associated with maintaining the queue
and repeatedly invoking the split kernel.

There are many opportunities for future work. It would be
interesting to integrate the construction algorithm into a full
rendering pipeline and combine a hybrid rasterization and
ray tracing algorithm. In that context, we would also like
to investigate using hierarchy construction directly on geo-
metric primitives created on the GPU, e.g. using tessellation
techniques. In additon, it would be interesting to further ex-
tent our algorithm to work on systems with multiple GPUs.
Due to higher computational power GPUs should also be a
good candidate for using other bounding volumes such as
OBBs or k-DOPs in the construction process, and our algo-
rithm show easily extend to using these. Finally, we would
be interested to explore other applications of BVHs such
as continuous collision detection and response computation,
multi-agent navigation and more.
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