
Fast Distance Field Computation Using Graphics Hardware

Avneesh Sud and Dinesh Manocha
Department of Computer Science, Univeristy of North Carolina

Chapel Hill, NC, USA
{sud,dm}@cs.unc.edu

http://gamma.cs.unc.edu/DiFi

UNC Computer Science Technical Report TR03-026

Abstract

We present an algorithm for fast computation of dis-
cretized 3D distance fields using graphics hardware. Given
a set of primitives and a distance metric, our algorithm
computes the distance field for each slice of a uniform spa-
tial grid by rasterizing the distance functions of the prim-
itives. We compute bounds on the spatial extent of the
Voronoi region of each primitive. These bounds are used
to cull and clamp the distance functions rendered for each
slice. Our algorithm is applicable to all geometric models
and does not make any assumptions about connectivity or
a manifold representation. We have used our algorithm to
compute distance fields of large models composed of tens
of thousands of primitives on high resolution grids. More-
over, we demonstrate its application to medial axis evalu-
ation and proximity computations. As compared to earlier
approaches, we are able to achieve an order of magnitude
improvement in the running time.

Keywords: Distance fields, Voronoi regions, graphics hard-
ware, proximity computations

1 Introduction
Given a set of objects, a distance field in 3D is defined at
each point by the smallest distance from the point to the
objects. Each object may be represented as data on a voxel
grid or as an explicit surface representation. Moreover, the
distances between the point and an object can be specified
using different metrics, including Euclidean or max-norm
distance. If the primitives are closed or orientable, a sign
can be assigned to the distance field.
Distance fields are frequently used in computer graphics,

geometric modeling, robotics and scientific visualization.
Their applications include shape representation [10, 29, 30],
model simplification [14], remeshing [20, 30], morphing
[5], CSG operations [1, 2], sculpting [25], swept volume

computation [19], path planning and navigation [15, 18],
collision and proximity computations [16, 17], etc. These
applications use a signed or unsigned distance field along a
discrete grid.
Different algorithms have been proposed to compute the

distance fields in 2D or 3D for geometric and volumetric
models. The computation of a distance field along a uni-
form grid can be accelerated by using graphics rasterization
hardware [15, 8, 28]. These algorithms compute 2D slices
of the 3D distance field by rendering the three dimensional
distance function for each primitive. However, rendering
the distance meshes of all the primitives for each slice may
become expensive in terms of transformation and rasteriza-
tion cost. As a result, current algorithms for 3D distance
field computation may be slow and not work well for de-
formable models or dynamic environments.
Main Contributions: We present a fast algorithm (DiFi)
to compute a distance field of complex objects along a 3D
grid. We use a combination of novel culling and clamping
algorithms that render relatively few distance meshes for
each slice. We also exploit spatial coherence between adja-
cent slices in 3D and perform incremental computations to
speed up the overall algorithm.
Our novel site culling algorithm uses properties of the

Voronoi diagram to cull away primitives that do not con-
tribute to the distance field of a given slice. We use a two-
pass approach and perform culling using occlusion queries.
Furthermore, we present a conservative sampling strategy
that accounts for sampling errors in the occlusion queries.
Our clamping algorithm reduces the rasterization cost of
each distance function by rendering it on a portion of each
slice.
We have implemented DiFi on a 2.8GHz PC with an

NVIDIA GeForce FX 5900 Ultra graphics processor and
used it to compute distance fields of complex objects con-
sisting of tens to hundreds of thousands of triangles. The
running time ranges from a second for small models to tens

Figure 1. 3D Distance Field of Hugo Model(17k poly-
gons): Distance to the surface is color coded, increasing
from red to green to blue. Time taken to compute the dis-
tance field on 73×45×128 grid using our algorithm is 4.2
seconds.

of seconds for large models. We have used DiFi to compute
the simplified medial axis of complex polyhedral models
and perform proximity computations in a dynamic environ-
ment for path planning. As compared to prior distance field
computation algorithms, our approach offers the following
advantages:

• Generality: No assumption is made with regards to
the input models. The objects may be non-orientable
or non-manifold surfaces, or may be represented using
voxel data.

• Efficiency: We show that our approach is significantly
faster than previous approaches. The culling tech-
niques provide us with a 3 − 20 times speedup in dis-
tance field computation over previous approaches that
can handle generic models. The speedups are higher
for complex models with a high number of primitives.

• Dynamic Models: Our algorithm involves no prepro-
cessing and can compute distance fields of dynamic
objects with a few thousand polygons at almost inter-
active rates.

Organization: The rest of the paper is organized in the fol-
lowing manner. We give a brief survey of distance field
computation algorithms in Section 2 and an overview of
our approach in Section 3. Section 4 describes our culling
algorithm and Section 5 presents the clamping algorithm.
In Section 6, we highlight two applications of our distance
field computation algorithm. We describe its performance
in Section 7 and analyze it in Section 8.

2 Related Work
The problem of computing a distance field can be broadly
classified by the type of input object representation. The
object can be specified either as a data on a voxel grid, such

as a binary image or as an explicit surface representation,
such as a triangulated model.

2.1 Distance Fields of Geometric Models
Many algorithms are known to compute the distance fields
of geometric models represented using polygonal or higher
order surfaces. These algorithms use either a uniform grid
or an adaptive grid. A key issue in generating discrete dis-
tance samples is the underlying sampling rate used for adap-
tive subdivision. Many adaptive refinement strategies use
trilinear interpolation or curvature information to generate
an octree spatial decomposition [27, 10, 25, 31].
Distance field computation can be accelerated using

graphics hardware. The graphics hardware based algo-
rithms compute a 2D slice of the distance field at a time.
Hoff et al. [15] render a polygonal approximation of the
distance function on the depth-buffer hardware and com-
pute the generalized Voronoi Diagrams in two and three di-
mensions. This approach works on any geometric model
that can be polygonized and is applicable to any distance
function that can be rasterized. An efficient extension of
the 2-D algorithm for point sites is proposed in [8]. It
uses precomputed depth textures, and a quadtree to esti-
mate Voronoi region bounds. However, the extension of
this approach to higher dimensions or higher order primi-
tives is not presented. A class of exact distance transform
algorithms is based on computing partial Voronoi diagrams
[21]. A scan-conversion method to compute the 3-D Eu-
clidean distance field in a narrow band around manifold tri-
angle meshes is the Characteristics/Scan-Conversion (CSC)
algorithm [22]. The CSC algorithm uses the connectivity
of the mesh to compute polyhedral bounding volumes for
the Voronoi cells. The distance function for each site is
evaluated only for the voxels lying inside this polyhedral
bounding volume. An efficient GPU based implementation
of the CSC algorithm is presented in [28]. The number of
polygons sent to the graphics pipeline is reduced and the
non-linear distance functions are evaluated using fragment
programs.

2.2 Volumetric Models
Given voxel data, many exact and approximate algorithms
for distance field computation have been proposed [24, 2,
12]. A good overview of these algorithms has been given in
[6]. The approximate methods compute the distance field in
a local neighborhood of each voxel. Danielsson [7] uses a
scanning approach in 2D based on the assumption that the
nearest object pixels are similar. The Fast MarchingMethod
(FMM)[26] propagates a contour to compute the distance
transformation from the neighbors. This provides an ap-
proximate finite difference solution to the Eikonal Equation
|∇u| = 1/f . A linear time algorithm for computing ex-
act Euclidean distance transform of a 2-D binary image is
presented in [3]. This is extended to k-D images and other

distance metrics [23].

3 Overview and Notation
In this section we introduce the notation used in the paper
and give an overview of our approach.
3.1 Distance Fields
A geometric primitive or an object in 3D is called a site.
Given a site pi, the scalar distance function dist(q, pi) de-
notes the distance from the point q ∈ R3 to the closest
point on pi. The minimum distance of q to a set of sites
P = {p1, p2, . . . , pm} is represented as dist(q,P) =
minpi∈P(dist(q, pi)). The distance fieldDM (P), for a do-
main M ⊂ R3, is the scalar field given by the minimum
distance function dist(q,P) for all points q ∈ M . For ease
of notation, let DM = DM (P). Given a subset, X ⊂ P ,
dist(q,X) ≥ dist(q,P)∀q ∈ M .
Distance fields are closely related to Voronoi regions.

The Voronoi region for pi is defined as:

V (pi) = {q | dist(q, pi) ≤ dist(q, pj)∀pj ∈ P,q ∈ M}

Our goal is to compute the distance field within a bounded
domainM represented as an axis-aligned uniform 3D grid.
Let the size of each voxel in the 3D grid be δx × δy × δz .
In a bounded domain, Voronoi regions are bounded. Let the
minimum and maximum bounds of the Voronoi region of
a site pi along Z be V (pi).zmin and V (pi).zmax, respec-
tively.
3.2 Computation using Graphics Hardware
A brute-force algorithm to compute DM would evaluate
dist(q, pi) for all sites pi ∈ P and store the minimum at
each grid point q ∈ M . If there are m sites, and the grid
has n cells, the time complexity of this algorithm isO(mn).
This brute force algorithm can be easily parallelized using
depth-buffered graphics rasterization hardware [15]. The
primitive sites in P consist of points, edges and triangles.
The set of voxels with a constant z-value represents a uni-
form 2D grid and is called a slice. A slice sk is defined as
sk = {(x, y, z)|(x, y, z) ∈ M, z = zk}. In the rest of the
paper, we represent the distance field Dsk(P) for a slice sk

as Dk(P). A sweep is performed along the Z axis and the
distance field Dk is computed for each slice. The complex-
ity of this algorithm is linear in m for each slice and the
running time can be slow whenm is large.
3.3 Our Approach
We speed up the 3D distance field computation by reduc-
ing the number of distance functions that are rasterized for
each slice. We exploit the following properties of Voronoi
regions and distance fields to accelerate the computation:

1. Connectivity: We consider distance metrics that are
symmetric, positive definite and satisfy the triangle in-
equality. Thus, Voronoi regions defined by that dis-
tance metric are connected. This is true for all Lp

norms, including Euclidean distance and max-norm
[4]. Note that for higher order sites, like line segments
and polygons, each Voronoi region may consist of non-
linear boundaries and may not be convex. But each
Voronoi region is connected.

2. Spatial Coherence: The distance fields of adjacent
slices, sk and sk+1, can have high spatial coherence.
The distance values associated with two points in ad-
jacent voxels on a 3D grid will be very close to each
other. We use this coherence to compute bounds on
the maximum change in the distance field between ad-
jacent slices.

3. Monotonicity: Given a slice, the distance function
of a site is a monotonic function. It has a minimum
value in the interior of the slice and is maximum on
the boundary of the slice.

Our goal is to cull away sites that do not contribute to
the final distance field for a particular slice. Furthermore,
the distance field for each site should be computed in the
region of the slice where it contributes to the final distance
field (see Figure 2). Our algorithm utilizes the above men-
tioned properties and computes conservative bounds on the
Voronoi regions. We use these bounds in two steps: to cull
the set of sites for each slice (described in Section 4) and
clamp the region of computation for each site in the non-
culled set (described in Section 5).
3.4 Site Classification
We introduce a classification of the sites used by our algo-
rithm to cull away sites that do not contribute to the distance
field for a slice. Let us assume that the sweep direction is
along the +Z direction. For a slice sk at z = zk, we par-
tition the set of sites P into three subsets depending on the
Voronoi region bounds of each site along the Z axis (shown
in Figure 2):

Intersecting, I+
k = {pi | V (pi).zmin ≤ zk ≤

V (pi).zmax}. Only the distance functions of these
sites contributes to the final distance field of slice sk.

Approaching, A+
k = {pi | V (pi).zmin > zk}. The

Voronoi region of an approaching site does not inter-
sect with current slice, but could potentially intersect
with a slice sl, where zl > zk.

Receding, R+
k = {pi | V (pi).zmax < zk}. Due to the

connectivity property of Voronoi regions, a receding
site can never become intersecting, hence it can be dis-
carded for any slice sl, where zl > zk.

For efficient computation, the algorithm presented in
Section 4 performs two passes along +Z and −Z direc-
tions and considers only the sites swept up-to the current

Figure 2. Site Classification: Shaded areas repre-
sent the connected Voronoi regions for a subset of sites
{p1, . . . , p5}. Sweep direction is along +Z. For slice
sk, the site sets are: Intersecting I+

k = {p2, p3, p4},
Approaching A+

k = {p5}, Receding R+
k = {p1} and

Swept S+
k = {p1, p2, p3}, Unswept U+

k = {p4, p5}. Dis-
tance functions have to be drawn for set I+

k only. For site
p3, the distance function has be drawn only in the region
Q3,k = V (p3) ∩ sk. For the next slice sk+1, p4 is moved
to S+

k+1, p5 is moved to I+
k+1 and p3 is moved toR+

k+1.

slice. We also partition P based on the spatial bounds of
each site along Z axis. Let pi.zmax denote the maximum Z
value of a site pi. Then the set P is partitioned as (shown in
Figure 2):

Swept, S+
k = {pi | pi.zmax ≤ zk}

Unswept, U+
k = {pi | pi.zmax > zk}

The intersecting set I+
k can be further partitioned into an

intersecting swept set IS+
k = (I+

k ∩S+
k) and an intersecting

unswept set IU+
k = (I+

k ∩ U+
k).

I+
k = IS+

k ∪ IU+
k (1)

The set of sites, P , is also partitioned into subsets along the
−Z sweep direction. The intersecting, swept and unswept
subsets are represented as I−

k , S
−
k , U

−
k , and are defined as

I−
k = {pi | V (pi).zmin ≤ zk ≤ V (pi).zmax}

S−
k = {pi | pi.zmax > zk}

U−
k = {pi | pi.zmax ≤ zk}

Consequently,

U+
k = S−

k , I+
k = I−

k = Ik

and Eq. (1) reduces to

Ik = IS+
k ∪ IS−

k (2)

The key idea for speedup is that for a large number of sites
m and any given slice sk, the size of Ik is typically much
smaller thanm. By computing a conservative estimate of Ik
one can cull away a large number of sites and considerably
speed up the distance field computation.

4 Site Culling
In this section, we present our culling algorithm that reduces
the number of distance functions that are rasterized for each
slice. Our goal is to compute the distance field Dk for each
slice sk. Since only the set Ik contributes to Dk, we have
Dk = Dk(Ik). Using Eq. (2), Dk can be expressed as:

Dk(Ik) = Dk(IS+
k ∪IS

−
k) = min

(
Dk(IS+

k),Dk(IS−
k)

)

Therefore, the problem is reduced to computing two dis-
tance fields Dk(IS+

k) and Dk(IS−
k) for each slice sk. We

present an algorithm to compute Dk(IS+
k) for sk with a

sweep direction along +Z. The same algorithm is used to
compute Dk(IS−

k) by using a sweep direction along −Z.
In the rest of the paper, we will present our algorithm for
+Z sweep direction and drop the + sign to simplify the
notation.
We utilize the spatial coherence between successive

slices and compute the intersecting swept set ISk+1 by per-
forming incremental computations on ISk (see Figure 2).
We use the following formulation:

(ISk+1) =
(
ISk ∪ (Sk+1 \ Sk)

)
\ (Rk+1 \ Rk) (3)

where \ represents the set-difference operation. The ex-
act computation of ISk and ISk+1 is equivalent to exact
Voronoi computation. Instead, we conservatively compute a
set of potentially intersecting swept sites ÎSk using Equa-
tion (3), where ÎSk ⊇ ISk.
Given the sets ÎSk and Rk, the algorithm for comput-

ing Dk+1, ÎSk+1 andRk+1 proceeds as follows:

1. Initialize ÎSk+1 = ÎSk,Dk+1 = ∞.

2. Update ÎSk+1 = ÎSk+1 ∪ (Sk+1 \ Sk). Add the
additional sites swept by slice sk+1 to ÎSk+1 .

3. Compute Dk+1. For each site p̂i ∈ ÎSk+1, com-
puteDk+1(p̂i) in order of increasing i. EachDk(p̂i) is
tested for visibility with respect toDk+1(Xi−1), which
is the distance field of set Xi−1 = {p̂1, p̂2, . . . , ˆpi−1}.
If Dk+1(p̂i) is not visible along the direction orthogo-
nal to sk+1, then it does not contribute to Dk+1.

4. Compute (Rk+1 \ Rk). All sites p̂i for which
Dk+1(p̂i) is not visible can be moved from ÎSk+1

toRk+1.

5. Update ÎSk+1 = ÎSk+1 \ (Rk+1 \ Rk)

Initially we set k = 0,Rk = ∅, ÎSk = {pi|pi.zmax = 0}.
We proceed along the Z-axis and compute the distance field
for each slice as described above. Each site pi is bucketed
into a list according to pi.zmax. This allows the addition

Figure 3. Sampling Error: (a) The Voronoi region V (p2)
of a swept site p2 does not lie on any cell (represented by
crosses) on slice sk, but lies on a cell for slice sk+1. (b) The
XY intersection of the Voronoi regions with slice sk. The
closest cell q to V (p2) is at a distance ε.

of swept sites in Step (2) to be performed in constant time.
The distance fields are rasterized approximately in order of
increasing distance to the current slice. This results in bet-
ter culling of the receding sites in Steps (3) and (4) of the
algorithm. The complexity of this algorithm for slice sk+1

is a linear function of the size | ÎSk+1 |.
The visibility computations are performed using occlu-

sion queries (e.g. GL NV occlusion query) available on
current graphics systems. As the distance meshes are scan
converted, these queries check for updates to the depth
buffer and return the number of pixels that are visible.
4.1 Conservative Sampling
The occlusion queries sample the visibility at fixed loca-
tions in each pixel and can result in sampling errors. In
particular, the algorithm presented above classifies a swept
site pi as receding if its Voronoi region V (pi) does not cover
any grid cells, i.e. the occlusion query returns zero visible
pixels for the distance field Dk(pi) in Step (3). This may
introduce errors when V (pi) intersects slice sk but its inter-
section with sk is not sampled by the rasterization hardware.
An incorrect classification of pi as receding can introduce
errors in Dl for a subsequent slice sl, l > k. One such case
is shown in Figure 3(a), for i = 2.
We modify the algorithm for distance field computation

to account for these sampling errors. The approach is based
on a lemma that states the condition for a Voronoi region to
be sampled.

Lemma 1. Let V (pi) be a voronoi region for a slice sk that
is undersampled, and the closest cell q is at a distance ε
from V (pi). If we reduce dist(q, pi) by ε without changing
dist(q,P − pi), we ensure that q ∈ V (pi).

Proof. Let q belong to the voronoi region V (pj) of site pj ,
and the point in V (pi) closest to q be r (see Figure 3), with
i = 2, j = 4, dist(q, r) = ε. We shall first prove the re-
sult for the case when V (pi) shares a boundary with V (pj).

Figure 4. Conservative Sampling: (a) Distance field
Dk(p2) of site p2 is occluded at all pixels on sk. (b) Trans-
lating Dk(p2) by δxy ensures it is visible at at least one
pixel.

Then using the fact r ∈ V (pi) and r ∈ V (pj), and the
triangle inequality, we have

dist(r, pj) = dist(r, pi)
dist(q, pi) ≤ dist(q, r) + dist(r, pi)
dist(r, pj) ≤ dist(r,q) + dist(q, pj)

⇒ dist(q, pi) − ε ≤ dist(r, pj) < dist(q, pj)

Thus, by reducing dist(q, pi) by ε and keeping dist(q, pj)
the same, q will lie in Voronoi region V (pi). This directly
extends to the case when V (pi) and V (pj) do not share
a boundary, by using a sequence of triangle inequalities
across Voronoi boundaries between V (pi) and V (pj).

We apply the result of Lemma 1 in the following manner. In
practice, we do not know the point q or ε but use the fact that

ε is bounded by pixel size, ε ≤ δxy =
√

δ2
x+δ2

y

2 . Therefore,
we move pi closer to all the points in slice sk, by subtracting
δxy from each value of the distance field Dk(pi). This is
equivalent to translating Dk(pi) along −Z by δxy and is
shown in Figure 4.
Given a slice sk+1, we redraw the translated distance

field of each site pi marked as receding in Step (4) of the
algorithm given above (i.e. pi ∈ Rk+1 \ Rk). The redrawn
distance field is tested for visibility with respect to Dk+1.
This redrawing is performed to ensure conservative sam-
pling for site-culling. During this step, updates to the final
distance field in the depth buffer are disabled. Moreover,
the translated field is clamped to 0 for negative values. For
line and triangle sites, the size of the Voronoi region is also
limited by the spatial size of the line segment or the triangle.
To ensure that the Voronoi region covers at least one of the
four neighboring cells, we increase the size of these sites by
δxy in addition to translating the distance field.

5 Distance Function Clamping
In Section 4, we presented an algorithm to cull away the
sites that do not contribute to the distance field Dk of slice

sk. In this section, we present a clamping algorithm to re-
duce the rasterization cost of the distance function of each
potentially intersecting swept site. Given a slice sk and each
site pi ∈ ÎSk, we compute the distance function dist(q, pi)
only for the set of points on sk that lie in the Voronoi re-
gion of pi. In other words, our goal is to evaluate the dis-
tance function for the set Qi,k = {q|q ∈ V (pi) ∩ sk}. We
first present an approach to compute a conservative estimate
Q̂i,k of Qi,k for any arbitrary set of sites. We further im-
prove the performance of the clamping algorithm for mani-
fold surfaces by using the CSC-algorithm [22].
5.1 Conservative Clamping
The connectivity of the Voronoi regions implies that Qi,k

is a connected set. We exploit the monotonicity property
and compute a superset Q̂i,k. Initially, we assume that we
are given the maximum valuemax(Dk(pi)) of the distance
field Dk(pi) of site pi on slice sk. We compute a set of
extreme points on sk where the value of the distance field
Dk(pi) is equal to the maximum value. By the monotonic-
ity property of distance functions, the set of points whose
distance function is less than or equal to max(Dk(pi)) be-
long to Q̂i,k. An example is shown in Figure 5.

Figure 5. Clamping distance field computation to Voronoi
region bounds on a slice. Q2,k = V (pi)∪sk. Q̂2,k ⊇ Q2,k

and is computed frommax(Dk(p2)).

The problem of distance function clamping reduces to
computingmax(Dk(pi)) for each site pi in ÎSk for a slice
sk. We use the following lemma to compute an upper bound
on max(Dk(pi)).

Lemma 2. Let max(Dk(Sk)) denote the maximum value
of the distance fields Dk(Sk) of set Sk on a slice sk and
max(Dk+1(Sk+1)) be defined similarly. Let the distance
between sk+1 and sk be |zk+1 − zk| = δz . Then

max(Dk+1(Sk+1)) ≤ max(Dk(Sk)) + δz (4)

Proof. Given two points qk(x, y, zk) ∈ sk and
qk+1(x, y, zk+1) ∈ sk+1 that lie in the Voronoi regions of
some two sites. Then

|dist(qk+1,P) − dist(qk,P)| ≤ δz. (5)

Figure 6. Change in distance field for signed distance
computation

This follows directly from the triangle inequality, and the
definition of the distance function dist(q,P). Moreover,
max(Dk(X)) = maxq∈sk(dist(q,X)). This implies that

max(Dk+1(X)) ≤ max(Dk(X)) + δz (6)

Moreover, for a slice sk and any two sets of sitesX1 andX2,
X1 ⊆ X2 ⇒ Dk(X2) ≤ Dk(X1). We know Sk ⊆ Sk+1.
This combined with Eq. (6), where X = Sk+1, leads to the
result in Eq. (4).

Given the maximum valuemax(Dk(Sk)) of the distance
field for slice sk, we use Eq. (4) to compute the maxi-
mum valuemax(Dk+1(Sk+1)) of the distance field for slice
sk+1. This also gives a conservative bound on maximum
value of the distance function for each site pi on slice sk+1,
max(Dk+1(Sk+1)) ≥ max(Dk+1(pi)) ∀ pi ∈ Sk+1. We
use it to compute a conservative bound on the set of points
Qi,k+1 on slice sk+1 and use this bound for clamping.
Note that the maximum distance value, max(Dk(Sk)),

may be infinity, if one is computing the distance field in a
narrow band at a distance dmax [22], or if one is comput-
ing the signed distance field for a closed manifold. For the
first case we define max(Dk(Sk)) to be the maximum fi-
nite value of the distance field, and set the update rule to be
max(Dk+1(Sk+1)) = min(dmax,max(Dk(Sk)) + δz).
For the second case, if qk does not lie in region where

the signed distance field is computed, and qk+1 does,
then the manifold surface lies between qk and qk+1 and
max(dist(qk+1,Sk+1)) ≤ δz . This is shown in Figure 6.
5.2 Manifold Surfaces
In many cases, the primitives lie on manifold surfaces and
we have the connectivity information In these cases, we use
the CSC algorithm [22] to further refine Q̂i,k+1 for signed
Euclidean distance fields. A site is marked asCSC-valid if it
lies on the interior of a convex or concave manifold surface
patch. Boundary sites, hyperbolic points (which are neither
convex or concave) and non-manifold sites are marked as
CSC-invalid. For each CSC-valid site pi, a convex poly-
hedron bounding V (pi) is computed. This polyhedron is

Figure 7. Medial Axis Transform: Left: Triceratops model (5.6k polygons, Grid Size=128× 56× 42, Computation Time=0.79s)
The medial surface is color coded by the distance from the boundary. Right: Brake rotor model (4.7k polygons, Grid Size=4 ×
128 × 128, Computation Time=0.61s). The medial seam curves are shown in red.

intersected with sk+1 to compute a convex polygonGi,k+1.
In this case,Gi,k+1 ∩ Q̂i,k+1 results in a tighter approxima-
tion of Qi,k+1.
5.3 Complete Algorithm
Given ÎSk , Rk and Dk, the algorithm for computing
Dk+1 as presented in Section 4 is refined to perform clamp-
ing as follows:

1. Compute max(Dk) by using multiple occlusion
queries as described in [13]. Compute max(Dk+1) =
min(dmax,max(Dk) + δ).

2. Initialize ÎSk+1 = ÎSk,Dk+1 = ∞.

3. Update ÎSk+1 = ÎSk+1 ∪ (Sk+1 \ Sk).

41. Compute Q̂i,k+1. For each site pi ∈ ÎSk+1, compute
Q̂i,k+1 frommax(Dk+1)

42. Refine Q̂i,k+1. For each CSC-valid site pi ∈ ÎSk+1,
compute the convex polygonGi,k+1. Refine Q̂i,k+1 =
Q̂i,k+1 ∩ Gi,k+1.

43. Compute Dk+1. For each site pi ∈ ÎSk+1, compute
DQ̂i,k+1

(pi) and test for visibility as before.

44. Perform Conservative Sampling Disable distance
field updates. For each site pi ∈ ÎSk+1 which is
marked as occluded, expand the site and compute
DQ̂i,k+1

(pi)− δxy . Test for visibility against the com-
puted distance field Dk+1 as before. Enable distance
field updates.

5. Compute (Rk+1\Rk) from the results of the visibility
tests of Step 3.4.

6. Update ÎSk+1 = ÎSk+1 \ (Rk+1 \ Rk).

Given a 3D grid with N + 1 slices and a Z range
[zmin, zmax], we make 2 passes. In the first pass, we
increment k from 0 to N . Initially, R+

0 = ∅, ÎS
+

0 =
{pi|pi.zmax = zmin}. In the second pass, k is decre-
mented from N down to 0. Initially, R−

N = ∅, ÎS
−
N =

{pi|pi.zmax = zmax}. The final distance field for each
slice is the lower envelope of both.

6 Applications
We have applied our distance field algorithm to compute
the medial axis transform of polyhedral models and path
planning. These applications require global distance field
computation along a 3D grid.
Simplified Medial Axis Computation: We compute

a simplification of the Blum medial axis, called the θ-
simplified medial axis (θ-SMA) [9]. The θ-SMA provides a
good approximation of the stable subset of the medial axis.
The algorithm for computing the θ-SMA of an object X is
based on computing the vector field called the neighbor di-
rection field of the object X and denoted by N(X). N(X)
is the negated gradient of the distance field defined by the
boundary of X . Given N(X), a separation criterion is de-
fined using the separation angle θ. The criterion is used to
check whether a line segment connecting the centers of ad-
jacent voxels of a grid crosses a sheet of the medial axis.
When a pair of points passes the separation criterion, we
add the facet between them to the approximation of θ-SMA
and compute a polygonal approximation of the medial axis.
In some cases a discrete voxel representation of the θ-SMA
is desirable. A voxel is added to the medial axis if it lies on
one side of a facet on the medial axis, which is determined
as above. This selection operation can be efficiently per-
formed on modern programmable graphics hardware using
fragment programs. The gradient field is stored on graphics
card texture memory. This avoids the costly readbacks of
the entire distance field to the CPU.

Interactive Path Planning in Dynamic Environments:
We have used our distance field computation algorithm
within a constraint-based path planner [11]. The path plan-
ning problem is reduced to simulating a constrained dy-
namic system, and computes an approximation of the gener-
alized Voronoi diagrams (GVD) of the robot and obstacles
in the environment. Each robot is subject to virtual forces
introduced by geometric and mechanical constraints, such
as making the robot follow an estimated path computed us-
ing the GVD and linking the rigid objects together to rep-
resent an articulated robot. The distance field is used to
compute an approximate GVD and a Voronoi graph. The
distance field is also used to perform proximity tests be-
tween the robot and the obstacles and maintain a minimum
clearance. Given a pair of objects, R1 and R2, the distance
field ofR2 is drawn in a potentially overlapping region. The
surface ofR1 is sampled at points inside the overlapping re-
gion, and a force is generated at each sample point qi. The
force is in the direction of the gradient of the distance field
and proportional to the distance between qi and the surface
of R2. As the obstacles in the environment undergo mo-
tion, our algorithm recomputes the distance field and uses
it for path computation. We have used this path planner for
virtual prototyping applications.

7 Implementation and Results
In this section we describe the implementation of our dis-
tance field computation algorithm and highlight its perfor-
mance on complex polygonal models.

We have implemented our algorithm in Microsoft Visual
C++ and use OpenGL as the graphics API. The distance
function for each primitive is approximated as a polygo-
nal mesh based on techniques presented in [15]. The vis-
ibility test is performed using the OpenGL occlusion query
extension GL NV occlusion query. We exploit the paral-
lelism of this query by batching together occlusion queries
for an entire set of potentially intersecting sites. The CSC
algorithm [22] is used for clamping the region of distance
field computation for CSC-valid sites. We have integrated
the CSC algorithm with the distance field computation al-
gorithm presented in [15]. We clamp the approximate dis-
tance mesh of each CSC-valid site with the bounding con-
vex polyhedra. The bounding convex polyhedra are com-
puted at run time. Our implementation involves no precom-
putation and is directly applicable to deformable models.

We generate the gradient vector field along with the dis-
tance field to compute the θ-SMA. The gradient vector is
encoded in the color values of each vertex of the distance
mesh. The voxel representation of the θ-SMA is com-
puted directly on the graphics processor using OpenGL’s
ARB fragment program extension. The medial axis is ren-
dered directly from the GPU as a volume grid.

7.1 Performance
We have applied our algorithm to 3D polygonal models.
These include scanned models and CAD models. Some of
them are non-manifold.
Distance Field Computation: All the timings reported
in this paper were generated on a Pentium4 2.8GHz PC
with 2GB RAM and an NVIDIA GeForce FX 5900 Ul-
tra graphics card, running Windows XP. We have com-
pared the performance of our distance field computation
algorithm (DiFi) with the algorithm presented by Hoff
et al. [15](called HAVOC), a software implementation of
CSC algorithm [22], and an implementation that combines
HAVOC with CSC. The timings are presented in Table 1.
In our benchmarks, DiFi obtains more than two orders of
magnitude over a software implementation of the CSC al-
gorithm and more than one order of magnitude performance
improvement over an implementation combining HAVOC
and CSC for manifold objects. For non-manifold models,
we obtain 4 − 20 times speedup over HAVOC.
Medial Axis Computation: We have applied the distance
field to compute the simplified medial axis of polyhedral
models. The simplified medial axis for two models is shown
in Figure 7. Our algorithm takes less than a second to
compute the medial axis of polyhedral models consisting
of thousands of polygons.
Path Planning: We have applied the path planning algo-
rithm to an assembly environment (shown in Figure 9). The
environment consists of an articulated robot arm with 6 de-
grees of freedom placed in the middle of a complicated pip-
ing structure. The robot arm reaches for a part moving on a
conveyor belt and avoids collision with obstacles. Various
links on the robot arm come in close proximity with the pip-
ing structures. We are able to dynamically compute the path
at interactive rates using our fast distance field computation
algorithm.

8 Analysis and Limitation
In this section we analyze the performance of our algorithm.
We highlight its computational complexity and the errors
in distance computation. We also compare its performance
with earlier algorithms.
We approximate each non-linear distance function with

a polygonal distance mesh. This introduces a tessellation
error [15]. The tessellation error is bounded by a user de-

fined ε > 0. We set ε =
√

δ2
x+δ2

y+δ2
z

2 so that the error in
the distance field is no more than half the diagonal length
of a grid cell. As a result, the main source of discretization
error is grid resolution. Current graphics processors support
24-bit depth buffers, so the error in depth computation and
comparisons is relatively small.
Given a model with m sites and a 3D grid of size

n = N × N × N , the cost of computing the distance
field is proportional to the number of processed cells over

Model Polys Resolution CSC HAVOC HAVOC+CSC DiFi
Rotor 4736 4x128x128 59.22 6.33 3.98 0.61
Rotor 4736 8x254x254 424.89 18.73 12.12 1.16
Triceratops5660 128x56x42 127.81 2.11 1.10 0.79
Triceratops5660 254x111x84 990.48 6.33 3.65 1.92
Hugo 17000 73x45x128 X 30.55 19.24 4.22
Hugo 17000 145x90x254 X 108.84 75.85 8.63
Head 21764 78x105x128 201.12 37.89 16.76 4.98
Shell 22598 254x252x252 X 162.97 95.31 7.79
Cassini 93234 186x254x188 X 356.03 298.55 29.86
Dragon 108926 57x90x128 X 171.13 95.69 24.76

Table 1. Distance Field Computation: Times (in seconds) to compute the global dis-
tance fields using approaches by Mauch [22] (CSC), Hoff et al. [15](HAVOC), an im-
plementation combining CSC with HAVOC on graphics hardware (HAVOC+CSC), and
our algorithm (DiFi). For the entries marked X, CSC algorithm fails as the model con-
tains CSC-invalid sites.

Figure 8. Cassini Model: A
volume rendering of the dis-
tance field of the Cassini with
93K polygons. The distance to
the surface is color coded, in-
creasing from red to green to
blue.

which the distance function is evaluated. The optimal cost
for computing the 3D distance field is O(N 3) = O(n).
For a slice sk, the optimal number of processed cells is∑|Ik|

i=1 |Qi,k| = N2. The actual number of processed cells

is
∑|Îk|

i=1 |Q̂i,k|. We define the following average number of
cells covered by one site:

optimal = 〈|Qi,k|〉 =
∑ |Ik|

i=1 |Qi,k|
|Ik|

, actual = 〈|Q̂i,k|〉 =
∑ |Îk|

i=1 |Q̂i,k|
|Îk|

The per-slice efficiency of our algorithm can be measured
by two ratios: the clamping efficiency, e1k = 〈|Qi,k|〉

〈|Q̂i,k|〉
and

culling efficiency, e2k = |Ik|
|Îk|
. The average efficiency per

slice can be defined as 〈e〉 = 1
N

∑N
k=1 e1k × e2k. The total

cost of the algorithm is O(n/〈e〉), and is bounded between
O(n) and O(mn). For CSC-invalid sites, the clamping ef-
ficiency e1k approaches 1 as the sites are uniformly dis-
tributed on the 3D grid. For CSC-valid sites, the complex-
ity is similar to that of the CSC algorithm, i.e. O(m + rn).
However, our algorithm obtains tighter bounds on the pa-
rameter r, r = 1/〈e〉. In practice, e1k ≈ 1, thus r = 1

〈e2k〉 .
We sample and render some of the distance functions

twice in order to overcome the sampling errors introduced
by occlusion queries. Moreover, to detect under-sampling
errors, the distance field is offset by a larger value of cell
size δxy , leading to a more conservative estimate of the
potentially intersecting set. This extra computation is per-
formed only when a site is marked as receding due to under-
sampling, and becomes smaller at higher grid resolutions.

8.1 Comparison
We now provide a comparison of our algorithm, DiFi, with
two previous algorithms for computing 3D distance fields

using graphics hardware: HAVOC, and the algorithm by
Sigg et al. [28].
HAVOC: DiFi is restricted in the distance functions han-
dled compared to HAVOC, since it assumes that the Voronoi
regions are connected. It can however handle a wide range
of distance functions, including all the Lp metrics, while
giving more than one order of magnitude speedup. Like
HAVOC, it is applicable to generic models without connec-
tivity information, and has the same error bounds.
Sigg et al.: The algorithm by Sigg et al. [28] is applica-
ble only to manifold surfaces and has the same asymptotic
complexity as the CSC algorithm [22], i.e. O(m+rn). It is
particularly efficient for computing the distance field in nar-
row bands around manifold surfaces. For small band sizes,
the parameter r is close to unity. However, for computing
the global distance field of complex environments with mul-
tiple manifold surfaces and high depth-complexity, r can be
O(m). Distances computed by this algorithm are exact up
to GPU floating texture precision. The culling and clamping
techniques presented in DiFi are complementary to those
presented in [22, 28]. In fact, the approach presented in [28]
can be used for distance field computation of manifold sites
inside DiFi instead of HAVOC. This would give significant
speedups over [28] for computing global distance fields in
complex environments. In particular, we have demonstrated
that DiFi provides significant speedups over HAVOC and
CSC combined.

8.2 Limitations
Our algorithm has certain limitations. Our distance field
computation is performed on a uniform grid and its accu-
racy is governed by grid resolution. Current graphics pro-
cessors provide up to 4K×4K pixel resolution and this im-
poses an upper bound on the grid resolution. Even though

Figure 9. Planning in an assembly environment: Constraint based planning in a dynamic environment consisting of 26.9k polygons
using distance fields. The robot arm tracks a moving part on a conveyor belt, while avoiding contact with other obstacles in the
environment. Our algorithm computes the distance field at interactive rates and uses the distance field to compute a collision free
path.

we use culling and clamping algorithms, the performance of
the algorithm is still bounded by the rasterization cost or the
fill-rate. Moreover, some applications require reading back
the distance field to the CPU and readbacks can be slow on
the PCI bus. Our algorithm is best suited for computation
on uniform grids and may not result in any speedups for
adaptive distance fields [10].

9 Conclusions and Future Work
We have presented an algorithm for fast computation of 3D
discretized distance fields using graphics hardware. Our al-
gorithm uses a combination of culling and clamping tech-
niques to reduce the number and size of distance functions
that are rendered for each slice. We use occlusion queries to
speed up the computation and have presented a conservative
scheme to overcome sampling errors. We have used our al-
gorithm to compute distance fields of complex 3D models.
The distance fields are used for computing the simplified
medial axis and for path planning in a dynamic environ-
ment. We achieve one to two orders of magnitude improve-
ment over prior algorithms and implementations.
There are many avenues for future work. We would like

to further improve the performance by utilizing temporal
coherence between successive frames for dynamic or de-
formable models. We would also like to use our algorithm
for other applications, including dynamic simulation, mor-
phing and proximity computations.

Acknowledgments
This research is supported in part by ARO Contract DAAD
19-02-1-0390, NSF Awards ACI-9876914, ACR-0118743,
ONR Contract N00014-01-1-0067, and Intel Corporation.
The models are courtesy of the Stanford University Com-
puter Graphics Laboratory, the Georgia Tech Large Mod-
els Archive, Alpha 1 Project at University of Utah, Lau-

rence Boisseux at INRIA and Stephen Wall, Gary Cough
and Don Jacob at NASA-JPL. We thank Mark Foskey for
θ-SMA code, Luv Kohli for help with cPlan, Mark Har-
ris and Greg Coombe for help with GPU programming and
the UNC GAMMA group for many useful discussions and
support. We are also grateful to the reviewers for their feed-
back.

References
[1] J. Bloomenthal, editor. Introduction to Implicit Surfaces,
volume 391. Morgan-Kaufmann, 1997.

[2] D. Breen, S. Mauch, and R. Whitaker. 3d scan conversion of
csg models into distance, closest-point and color volumes.
Proc. of Volume Graphics, pages 135–158, 2000.

[3] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman. Linear
time Euclidean distance transform and Voronoi diagram al-
gorithms. IEEE Trans. Pattern Anal. Mach. Intell., 17:529–
533, 1995.

[4] L. P. Chew and R. L. Drysdale, III. Voronoi diagrams based
on convex distance functions. In ACM Symposium on Com-
putational Geometry, pages 235–244, 1985.

[5] D. Cohen-Or, D. Levin, and A. Solomovici. Three-
dimensional distance field metamorphosis. ACM Transac-
tions on Graphics, 1997.

[6] O. Cuisenaire. Distance Transformations: Fast Algorithms
and Applications to Medical Image Processing. PhD thesis,
Universite Catholique de Louvain, 1999.

[7] P. E. Danielsson. Euclidean distance mapping. Computer
Graphics and Image Processing, 14:227–248, 1980.

[8] M. Denny. Solving geometric optimization problems using
graphics hardware. Computer Graphics Forum, 22(3), 2003.

[9] M. Foskey, M. Lin, and D. Manocha. Efficient computation
of a simplified medial axis. Proc. of ACM Solid Modeling,
pages 96–107, 2003.

[10] S. Frisken, R. Perry, A. Rockwood, and R. Jones. Adaptively
sampled distance fields: A general representation of shapes
for computer graphics. In Proc. of ACM SIGGRAPH, pages
249–254, 2000.

[11] M. Garber and M. Lin. Constraint-based motion planning
using voronoi diagrams. Proc. Fifth International Workshop
on Algorithmic Foundations of Robotics, 2002.

[12] S. Gibson. Using distance maps for smooth representation
in sampled volumes. In Proc. of IEEE Volume Visualization
Symposium, pages 23–30, 1998.

[13] N. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations us-
ing graphics processors. Proc. of ACM SIGMOD, 2004.

[14] T. He, L. Hong, A. Varshney, and S.Wang. Controlled topol-
ogy simplification. IEEE Transactions on Visualization and
Computer Graphics, 2(2):171–184, 1996.

[15] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast
computation of generalized voronoi diagrams using graphics
hardw are. Proceedings of ACM SIGGRAPH, pages 277–
286, 1999.

[16] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha. Fast and
simple 2d geometric proximity queries using graphics hard-
ware. Proc. of ACM Symposium on Interactive 3D Graphics,
pages 145–148, 2001.

[17] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha. Fast 3d
geometric proximity queries between rigid and deformable
models using graphics hardware acceleration. Technical Re-
port TR02-004, Department of Computer Science, Univer-
sity of North Carolina, 2002.

[18] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He.
Virtual voyage: Interactive navigation in the human colon.
Proc. of ACM SIGGRAPH, pages 27–34, 1997.

[19] Y. Kim, G. Varadhan, M. Lin, and D. Manocha. Efficient
swept volume approximation of complex polyhedral mod-
els. Proc. of ACM Symposium on Solid Modeling and Appli-
cations, pages 11–22, 2003.

[20] L. Kobbelt, M. Botsch, U. Schwanecke, and H. P. Seidel.
Feature-sensitive surface extraction from volume data. In
Proc. of ACM SIGGRAPH, pages 57–66, 2001.

[21] M. Lin. Efficient Collision Detection for Animation and
Robotics. PhD thesis, Department of Electrical Engineering
and Computer Science, University of California, Berkeley,
December 1993.

[22] S. Mauch. Efficient Algorithms for Solving Static Hamilton-
Jacobi Equations. PhD thesis, Californa Institute of Tech-
nology, 4 2003.

[23] C. Maurer, R. Qi, and V. Raghavan. A linear time algo-
rithm for computing exact euclidean distance transforms of
binary images in arbitary dimensions. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 25(2):265–270,
February 2003.

[24] J. C. Mullikin. The vector distance transform in two and
three dimensions. CVGIP: Graphical Models and Image
Processing, 54(6):526–535, Nov. 1992.

[25] R. Perry and S. Frisken. Kizamu: A system for sculpting
digital characters. In Proc. of ACM SIGGRAPH, pages 47–
56, 2001.

[26] J. A. Sethian. Level set methods and fast marching methods.
Cambridge, 1999.

[27] R. Shekhar, E. Fayyad, R. Yagel, and F. Cornhill. Octree-
based decimation of marching cubes surfaces. Proc. of IEEE
Visualization, pages 335–342, 1996.

[28] C. Sigg, R. Peikert, andM. Gross. Signed distance transform
using graphics hardware. In Proceedings of IEEE Visualiza-
tion, 2003.

[29] G. Varadhan, S. Krishnan, Y. Kim, and D. Manocha.
Feature-sensitive subdivision and isosurface reconstruction.
Proc. of IEEE Visualization, 2003.

[30] G. Varadhan, S. Krishnan, T. V. N. Sriram, and D. Manocha.
Topology preserving surface extraction using adaptive sub-
division. Technical report, Department of Computer Sci-
ence, University of North Carolina, 2004.

[31] J. Vleugels and M. Overmars. Approximating Voronoi dia-
grams of convex sites in any dimension. International Jour-
nal of Computational Geometry and Applications, 8:201–
222, 1997.

