Real Time Inverse Kinematics for General
Manipulators

Dinesh Manocha
John F. Canny’

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California at Berkeley
Berkeley, CA 94720

Abstract: The inverse kinematics of serial manipulators is a central problem in the
automatic control of robot manipulators. The main interest has been in inverse kinematics
of a six revolute jointed manipulator with arbitrary geometry. It has been recently shown that
the joints of a general 6 R manipulator can orient themselvesin 16 different configurations (at
most), for a given pose of the end—effector. However, there are no good practical solutions
available, which give a level of performance expected of industrial manipulators. In this
paper, we present an algorithm and implementation for real time inverse kinematics for a
general 6 R manipulator. When stated mathematically, the problem reduces to solving a
system of multivariate equations. We make use of the algebraic properties of the system and
the techniques used for reducing the problem to solving a univariate polynomial. However,
the polynomial is expressed as a matrix determinant and its roots are computed by reducing
to an eigenvalue problem. The other roots of the multivariate system are obtained by
computing eigenvectors and substitution. The algorithm involves symbolic preprocessing,
matrix computations and a variety of other numerical techniques. The numerical accuracy
of these operations is well understood and for most cases we are able to compute accurate
solutions using double precision arithmetic. The average running time of the algorithm, for
most cases, is 11 milliseconds on an IBM RS/6000 workstation. This approach is applicable
to inverse kinematics of
all serial manipulators.

!Supported by IBM Graduate Fellowship, David and Lucile Packard Fellowship and National Science
Foundation Presidential Young Investigator Award (# TRI-8958577).

ZSupported in part by David and Lucile Packard Fellowship and National Science Foundation Presidential
Young Investigator Award (# TRI-8958577).

1 Introduction

The inverse kinematics problem for general serial manipulators is fundamental for computer
controlled robots. Given the pose of the end effector (the position and orientation), the
problem corresponds to computing the joint displacements for that pose. The most inter-
esting case has been that of serial manipulators with six joints. The complexity of inverse
kinematics of a general six jointed is a function of the geometry of the manipulator. While
the solution can be expressed in closed form for a variety of special cases, such as when three
consecutive axes intersect in a common point, no such formulation is known for the general
case. The main interest has been in a 6/ manipulator, which has six revolute joints, the
links are of arbitrary length and no constraints are imposed on the geometry of various links.
It is not clear whether the solutions for such a manipulator can be expressed in closed form.
[terative solutions (based on numerical techniques) to the inverse kinematics for general 6 R
manipulators have been known for quite some time. However, they suffer from two draw-
backs. Firstly they are slow for practical applications and secondly they are unable to find
all the solutions. As a result, most industrial manipulators are designed sufficiently simply
so that a closed from exists.

In the absence of a closed form solution, [WM91] claim that the problem of inverse
kinematics for a general 6 & manipulator is considered solved when

o A tight upper bound on the number of solutions has been established.

o An efficient, numerically sound method for computing all solutions has been developed.

At the same time, we feel it is important that the solution be able to provide a level of
performance expected of industrial manipulators.

All commercial robots with six revolute joints are designed with simple kinematic model
such that their inverse kinematics can be expressed as a closed form solution. In real world
applications the positioning accuracy of these manipulators depends on the kinematic model
used to describe the robot geometry in a parametric form. However, manufacturing errors
in machining and assembly of manipulators lead to discrepancies between the design param-
eters and physical structure. This mismatch is especially prevalent in manipulators with
revolute joints in which small manufacturing errors produce significant errors between the
actual and predicted positions and orientations of the end effector. The typical approach
involves identification of the individual kinematic parameters and incorporating them into
manipulator’s controller to improve positional accuracy. The former process of identifica-
tion is called the arm signature identification [SSN86, WL84]. Given the accurate kinematic
parameters, a number of methods have been proposed to calibrate and compensate for the
kinematic errors in robot manipulators [Hay83, VW87]. However, a practical solution for
the inverse kinematics of general manipulators, especially 6, will eliminate the need for any
algorithms for calibration and compensation of kinematic errors.

The inverse kinematics problem for six revolute joints has been studied for at least two
decades. The earliest systematic attempt on this problem appears to have been by Pieper
[Pie68]. Pieper developed closed form solutions for the case where the three consecutive axes

are concurrent. For 6 K manipulators of general geometry, Pieper used a naive elimination
strategy, which indicated an upper bound of 64, 000. The first major accomplishment on the
general version problem was obtained by [RRS73], where an upper bound of 32 was given to
the number of solutions. All these bounds on the number of solutions apply when the actual
number is finite. The proof in [RRS73] is based on arguments from synthetic geometry and
is non-constructive. The first constructive solution to the problem was given by [AAT79]. In
particular, [AAT9] expressed the solution in the form of 12 x 12 determinant, whose entries
were quartic polynomials in the tangent of the half-angle of one of the joint variables. [DC80]
provided a 32 degree polynomial in the tangent of the half-angle of one of the joint variables.

Tsai and Morgan used a higher dimensional approach to the inverse kinematics problem
[TM85]. In particular, they cast the problem as eight second-degree equations and solved
them numerically using polynomial continuation. This is in contrast with the earlier ap-
proaches, where a single polynomial in the tangent of the half-space of one of the joint
variables was derived (referred as the lower dimensional approach). They tried different
configurations and found only 16 solutions (sometimes complex) for various 6 R manipula-
tors of different geometries. As a result, they conjectured that this problem has at most
16 solutions. The first conclusive proof of the fact that the problem can have at most 16
solutions was given by [Pri86]. In particular, [Pri86] showed that the remaining 16 solutions
to the 32 degree polynomial in [DC80] have purely imaginary parts. Finally, [LL.88a, L1.88b]
gave the exact solution in lower dimensions by reducing the problem to a 16 degree polyno-
mial. Moreover, [RR89] used dialytic elimination and properties of the ideal generated by
the multivariate equations to derive a 16 degree polynomial in the tangent of the half-angle
of a joint variable. Complementing these results, [MD89] presented an example consisting of
a manipulator and a pose of the end effector such that the inverse kinematics problem has
16 real solutions and thereby, establishing the fact that 16 is a tight bound on the number
of solutions.

As far as implementations of these algorithms are concerned, only continuation methods
have been able to solve the problem for a variety of cases [TM85, WM91]. According to
[WMO1], direct application of lower dimensional methods, like the one presented in [RR89],
require hundreds of digits of precision for portions of the computation and therefore make
it impractical for implementation on current workstations. However, algorithms based on
continuation methods are rather slow. The best known algorithm takes about 10 seconds on
an average of CPU time on an IBM 370 — 3090 using double precision arithmetic [WM91],
which falls short of what is expected of industrial manipulators. As a result no good practical
solutions are available for the inverse kinematics of a general 6 R manipulator.

In this paper we present an algorithm and implementation for real time inverse kinematics
for a general 6 R manipulator. We make use of the algebraic results presented in [RR89].
However, we perform matrix operations and reduce the problem to computing eigenvalues
and eigenvectors of a matrix as opposed to computing a univariate polynomial in the tangent
of a half-angle of a joint variable. In particular, we obtain a 24 x 24 matrix, which therefore
has 24 eigenvalues. 8 of these eigenvalues are fixed constants and the 16 other eigenvalues
correspond to the tangent of the half-angle of a joint variable. Furthermore, the eigenvectors

corresponding to these 16 eigenvalues are used to compute the rest of the joint variables.
The main advantage of this technique lies in its efficiency and numerical stability. The
algorithms for computing eigenvalues and eigenvectors of a matrix are backward stable® and
fast implementations are available [GL89, ABB*92]. This is in contrast with expanding
a symbolic determinant to compute a degree 16 polynomial and thereby, computing its
roots. The latter method is relatively slower and the problem of computing roots of such
polynomials can be ill-conditioned [Wil59, Wil63]. The numerical stability of the operations
used in our algorithm is well understood. As a result, we are able to come up with tight
bounds on the accuracy of the solution. For almost all instances of the problem we are able
to compute accurate solutions using 64 bit IEEE floating point arithmetic [Gol91]. Moreover,
the average running time of the algorithm is 11 milliseconds on an IBM RS/6000. In a few
cases we need to use sophisticated techniques like solving generalized eigenvalue system and
the resulting algorithm may take up to 25 milliseconds on the IBM RS/6000.

The rest of the paper is organized in the following manner. In Section 6.2, we review
the inverse kinematics problem and reduce the problem to solving a system of multivariate
polynomials. We also give a brief preview of the lower dimensional approach presented in
[RR89]. In Section 6.3, we present results from linear algebra and numerical analysis, which
are being used in the algorithm. The algorithm has been presented in Section 6.4 and we
discuss its accuracy, implementation and performance in Section 6.5. In Section 6.6 we
extend the algorithm to six jointed manipulators consisting of revolute and prismatic joints.
We also highlight the applications of this approach to redundant manipulators.

2 Inverse Kinematics

2.1 Problem Formulation

We use Denavit-Hartenberg formalism, [DH55], to model a 6 R manipulator. Each link is
represented by the line along its joint axis and the common normal to the next joint axis.
In the case of parallel joints, any of the common normals can be chosen. The links of the 6 R
manipulator are numbered from 1 to 7. The base link is 1, and the outermost link or hand
is 7. A coordinate system is attached to each link for describing the relative arrangements
among the various links. The coordinate system attached to the zth link is numbered :. More
details of the model are given in [SV89, TM85]. The 4 x 4 transformation matrix relating
i + 1 coordinate system to i coordinate system is [SV89]:

G =S Sifli g

| s ahi —apy a;s;
AZ_ 0 Hi)\Z dZ ’ (1)

0 0 0 1

3An eigendecomposition algorithm is backward stable if it computes the exact eigendecomposition of a
slightly perturbed matrix.

where
s; =sinf;, ¢; = cosb;, 0, is the ¢th joint rotation angle,

W = sine;, A\; = cosqy, «; is the twist angle between the axes of joints ¢ and ¢ + 1,
a; is the length of link z + 1,
d; is the offset distance at joint ¢.

For a given robot with revolute joints we are given the a;’s, d;’s, p;’s and \;’s. For the
inverse kinematics problem we are also given the pose of the end-effector, attached to link
7. This pose is described with respect to the base link or link 1. We represent this pose as:

y My Ny gy

0 0 1

— T Ty

Ahand —

The problem of inverse kinematics corresponds to computing the joint angles, 61, 65,05,
04, 05 and fg such that
A1AASALASAG = Apung. (2)

The left hand side entries of the matrix equation given above are functions of the sines
and cosines of the joint angles. Furthermore, this matrix equation corresponds to 12 scalar
equations. Since the matrix formed by the first 3 rows and 3 columns of Aj,,4 1s orthonormal,
only 6 of the 12 equations are independent. Thus, the problem of inverse kinematics of general
6 R manipulators corresponds to solving 6 equations for 6 unknowns.

2.2 Raghavan and Roth Solution

In this section, we briefly describe the lower dimensional approach described by Raghavan
and Roth [RR89]. They reduce the multivariate system to a degree 16 polynomial in tan(%&),
such that the joint angle 5 can be computed from its roots. The other joint angles are
computed from substitution and solving for some intermediate equations.

Raghavan and Roth rearrange the matrix equation, (2), as
AsALA; = ASTAT A gAY (3)

As a result the entries of the left hand side matrix are functions of #3,64 and 65 and the
entries of the right hand side matrix are functions of 8y, 65 and 6. This lowers their degrees
and reduces the symbolic complexity of the resulting expressions. The entries of columns 3
and 4 of the right hand side matrix in (3) are independent of fs. As a result, comparing the
entries of the 3rd and 4th column results in 6 equations in 5 variables:

EQ1L: csfi + s3fa = cahq + 52k — ay
EQ2: ssfi — esfo = —Xa(s2hy — cho) + pa(hs — dy)

where

EQ3:
EQ4 .
EQ5:
EQ6:

S
f2
fs

1
L)

s

g1
92
g3

ny
UP)

ns

= 3 Q3

<

g

fs = p2(s2h1 — c2ha) + A2(hs — da)
€371 + S372 = €Ny + SaNg
8311 — €3r3 = —Aa(Sany — eang) + pans

rs = ps(sany — cang) + Aans,

= 491 + 5492 + a3
= —A3(S401 — c492) + X303
= p3(sag1 — €192) + Asgs + ds

= C4Mmy + S4Mmy
= —As(samq1 — camy) + pzms

= pa(samy — cama) + Azm

= C505 + G4
= —ssAqa5 + pads
= Ssftals + Aads + dy

= Ssls5
= CsAafls + fals
= —Csftafts + AaAs

= ap+3819g—a
= —M(s1p—cq) + pa(r —dy)
= (s — aq) + M(r —dv)

= cu -+ s51v
= —M(s1u — o) + pw
= pi(s1u — c1v) + Mw

= —lyas — (Mype + nzAe)ds + ¢

= —lyas — (mype +nyAe)ds + qy
—l.a6 — (Mo + n2Xe)ds + ¢

= Mapls + Nals

= myfie + NyAe

= m.pe + nz-)\6

5

Let

h1 fl ny 1
h = h2 , f = f2 R n= N9 5 r = T2
h3 f3 ns s

and the equations, EQ1-EQ6 can be rearranged to obtain 6 equations, py, p2, ps, {1, s, [3:

P Cy S92 0 1 0 0 C3 S3 0 a9
P = P2 = S92 —Cy 0 h= 0 —)\2 H2 S3 —C3 0 f + 0
P3 0 0 1 0 H2)\2 0 0 1 dz
ll Cy S92 0 1 0 0 C3 S3 0
1 = 12 = SS9 —Co 0 n = 0 —)\2 H2 S3 —C3 0 r
13 0 0 1 0 H2)\2 0 0 1

It follows that the left hand side of p; and [; is a linear combination of 1, c3, s2, ¢1, 81,
C1Cg, €189, $1C2, $159. In a similar fashion the right hand side is a linear combination of 1, ¢s,
S5,Cqy Sq, C4C5, C4S5, S4C5, S455. However, the coefficients used to express the right hand side
as a linear combination are functions of s5 and cs

Consider p and | as 3 x 1 vectors. According to [RR89], the left and right hand sides of
the following equations have same power products as the left and right hand sides of p; and
lii

p-p, p-LL pxl, (p-pl—2(p-p. (5)

In all we get 14 equations and they can be expressed as:

5455
5152
54C5
51C9
€455
€159
C4Cx
C1C2
(Q) 51 - (P) S4 9 (6)
Cq
5]
S5
52
Cs
c
2 1

where Q is a 14 x 8 matrix, whose entries are all constants. Furthermore, these entries are
obtained from the left hand sides of p;’s, [;’s and the equations (5). P is a 14 x 9 matrix,
whose entries are linear functions of s3 and ¢35 and they are obtained from the right hand sides
of pi’s, I;’s and the equations, (5). The relationship expressed in (6) helps us in eliminating
four of the five variables.

Raghavan and Roth use 8 of the 14 equations in (6) to eliminate the left hand side terms,
expressed as functions of #; and 65, in terms of the right hand side, expressed as functions

of 05, 6, and 05. As a result, [RR89] obtain the relation:

5455
S54Cs
€435
C4C5
)| s | =0, (7)
C4q
S5
Cs

1

where X% is 6 x 9 matrix, whose entries are linear combinations of s3, ¢z and 1. Given (7),

substitute
2z 1 —a3 224 11— 2z5 11—

BT A R e A e A Al B A e

53

where x3 = tan(%&), T4 = tan(%i), 5 = tan(%i). After the substitution, multiply each

equation by (1 4+ 22), (I + 22) and (1 + z%) to clear out the denominators and (7) can,

therefore, be expressed as:

2.2
Lyl

xix5
v}
x4x§
(X)) | zazs | =0, (8)
T4
3
Ts

1

where (E/) is 6 x 9 matrix, whose entries are quadratic polynomial in x35. The system given
above is not a square system and to convert it into a square system [RR89] use dialytic
elimination. In particular, the equation expressed in (8) are multiplied by x4 to obtain a

*We may obtain more than 6 equations after elimination. However, we choose any 6 of them in this
matrix. More details are given in Section 6.4.

square system of the form
Lyls

T4T5

where 0 is a 3 X 3 null matrix. Let

" ¥ o
2= (3 2)

and " is a 12 x 12 matrix whose entries are quadratic polynomials in x3. Therefore, its
determinant is a polynomial of degree 24 in 5. Let us represent that polynomial as R(x3).

Lemma 2.1 (1 4 23)* divides R(x3).

Proof: [RR39].

As a result, the degree 16 polynomial,

R(z3)

Q(zs) = T4t

(10)
is the input—output polynomial, whose roots are used to compute the joint angle ;3. Ragha-
van and Roth expand the determinant and use a root solver for computing the values of 8.
Given 63, they solve the 11 linear independent equation in (9) to solve for 84 and 65. Finally
they use the equations, (6) and (3) to solve for 6y, 63 and 6s.

2.3 Numerical Problems in Raghavan and Roth Solution

There are many computations in the solution highlighted above, which can have problems
due to floating point arithmetic. For example, many properties of the ideal generated by
P1s P2, P3, 11, (2, I3 may not hold due to floating point computation. These properties are
being utilized while deriving the equations (5). Furthermore, computing the determinant

of ¥" can introduce significant numerical errors such that (1 4+ 23)* may not exactly divide

the determinant. Finally, the computation of real roots of polynomials of degree 16 can
be ill conditioned [Wil59, Wil63]. As a result, the floating point errors accumulated in
the intermediate steps of the computation, and therefore in the coefficients of the degree
16 polynomial, can have a significant impact on the roots of the polynomial. Many such
examples are highlighted in [Wil59, Wil63]. For example, consider the polynomial

P(z) = 372 ara® = T (z — k/20).

k=1

A small perturbation of relative magnitude 107 in a9 can induce a displacement of order
unity in the larger roots of P(x).

It is for this reason that the algorithm presented in [RR89] requires hundreds of digits of
precision for portions of computations [WM91]. Most current workstations provide us with
a hardware implementation of double precision arithmetic. It is possible to simulate higher
order precision in software. However, that has a significant impact on the speed and the
resulting algorithm becomes too slow for practical applications.

3 Matrix Computations

Many of the matrix computations used in the algorithm for inverse kinematics have been
reviewed in the appendix. These include eigenvalues and eigenvectors of matrices, singular
value decomposition, condition numbers of matrices, eigenvalues and eigenvectors, cluster
of eigenvalues. We make use of these computations in the inverse kinematics algorithm
presented in the next section.

4 Algorithm

In this section we describe our algorithm in detail. The initial steps in our algorithm make
use of the results presented in [RR89]. However, we perform symbolic preprocessing and
make certain checks for condition numbers and degeneracy to improve the accuracy of the
overall algorithm . The overall algorithm proceeds in the following manner:

1. Symbolic Computation: Treat the a;’s, d;’s, A\;’s, u;’s and the entries of the right
hand side matrix Aj,,q as symbolic constants. As a result, express the entries of
the 14 x 9 matrix P and 14 x 8 matrix Q, as shown in equation (6), as functions
of these symbolic constants. It corresponds to symbolic elimination and is performed
using the properties highlighted in [RR89]. However, it is performed only once for
general 6 K manipulators. An equivalent symbolic elimination can be performed for a
serial manipulator with prismatic and revolute joints. The MAPLE program used in
symbolic preprocessing for 6 & manipulators is highlighted in the appendix at the end
of this paper.

. Substitution of Manipulator parameters: Given a particular 6 R manipulator,
substitute the numerical values corresponding to the link lengths, offset distances and
twist angles in the symbolic formulations derived above. The substitution results in
numerical matrices P and Q, as shown in (6).

. Numerical Conditioning: Compute the rank of Q using SVD. If Q has rank 8
then this manipulator can have up to 16 solutions for any pose of the end—effector.
However, the rank may be less than 8 and as a result we obtain an over—constrained
system. In this case the upper bound on the number of solutions may be less than 16.
For example, a PUMA manipulator has a total of at most 8 solutions for any pose of

the end-effector [SV89].

. Numeric Elimination: Eliminate the variables 8; and 5 from (6). This elimination
is performed by computing a minor of maximum rank of () and using that minor to
represent 1 and 6, as functions of 8, and 65.

. Rank Computation: After eliminating 6, and 63, we obtain a matrix 3, as shown
in (7). The actual number of rows in X is equal to R = (14 —rank(Q)) > 6. Take any
of the 6 rows of ¥ (among R) and substitute for sines and cosines of 03,6, and 65 in
terms of x5, x4 and x5, respectively. In case, there are more than 6 rows we recommend
taking 6 distinct linear combinations. As a result, we obtain a matrix of the form X,
as shown in (8). After using dialytic elimination we compute the 12 x 12 matrix, >,
whose entries are quadratic polynomial in 3.

. Reduction to Eigenvalue Problem: Reduce the problem of computing roots
of, determinant(X") = 0, to an eigenvalue problem. The eigenvalues of the resulting
24 x 24 matrix correspond to the root x5 and the corresponding eigenvectors are used to
compute the values of x4 and x;5. Substitute these relations in (6) and (3) to compute
the joint angles 6y, 6, and 5. The algorithm also involves clustering eigenvalues to
accurately compute eigenvalues of multiplicity greater than one. Depending upon the
condition number of the matrices involved, the problem may be reduced to a generalized
eigenvalue problem.

. Improving the Accuracy: Compute the condition number of the eigenvalues.
In case, the condition number is high, improve the accuracy of resulting solution by
Newton’s method. The solutions computed above are the starting points for Newton’s
method and its quadratic convergence gives us high accuracy in a few steps.

These steps are explained in detail in the following sections.

Symbolic Preprocessing

Many properties of the ideal generated by the equations, EQ1-EQ6, may not hold in practice
due to floating point arithmetic. As a result we treat the known parameters of a 6 K manip-

ulator, the a;’s, d;’s, a;’s and the entries of Ayy,g (like Iy, 1y, s, ¢y) as symbolic constants.

10

These symbolic constants along with the variables 6; are used in the symbolic derivation
of the equations highlighted in (5). We use the computer algebra system, MAPLE, for the
derivation and simplification of the expressions. A major simplification is obtained by using
the identities

sin®(a;) + cos*(a;) = 1, sin®(0;) + cos*(0;) = 1.

The simplify command in MAPLE can perform this simplification. The left and right hand
side of the 8 equations, shown in (5), are computed separately. Furthermore, we treat
P, q,r,u,v,win the equations (4) as symbolic constants. As a result, we obtain expressions as
functions of these symbolic constants as opposed to I, 1, [, my, my, m.,ny,ny, Nz, oy @y, Gs-
After computing the 14 equations, EQI-EQ6 and 8 equations shown in (5), we collect the
terms as functions of sines and cosines of the joint angles #; and 8, for the left hand sides of
the equations and of the joint angles 63,8, and 65 for the right hand side of the equations.
All the constant terms from the left hand side of the equations are moved to the right hand
sides. The coefficients of the equations are used to compute the entries of the matrices P
and Q. As a result, we are able to express the entries of P and Q as polynomial functions
of the symbolic constants a;’s, d;’s, A;’s, p;’s, p,q,r, u,v,w. In case of P, each entry is of the
form fsin(f3) + ycos(6s) + 6, where 3,+ and 6 are functions of the symbolic constants.

The matrix Q has a special structure. In particular many of its entries are zero and as
a result the system of equations, (6), can be expressed as two different system of equations
of the form:

5455
S54Cs
€435
() = e oo | (1)
C4q
S5
Cs

5485

S54Cs
5152 s
495
S1C2 o
465

= (P | s |, (12)

Cq

€182
€162

S9 S5
Co Cs

1

where Q1,Q2, Py, Py are 6 x 2,8 X 6,6 x 9,8 x 9 matrices, respectively. The details of this
formulation are given in [RR89]. In particular, we break the set of the 14 equations into sets
of 6 and 8 equations. Qq, Q3 are minors of Q and Py, Py are minors of P.

11

The symbolic complexity of the entries of Py, Py, Q1, Q2 corresponding to the equations
p xp, (p-p)l—2(p-1)p is high. Simplifying these entries by collecting terms with common
subexpressions increases the efficiency and numerical accuracy of subsequent computations.

4.2 Numerical Substitution and Rank Computation

Given the Denavit—Hartenberg parameters of a manipulator, we substitute the a;’s, d;’s, A;’s
and p;’s into the functions used to represent the entries of Py, Py, Q1, Q2. These entries are
functions of p, ¢, 7, u,v,w. While substituting the numerical entries, accuracy problems can
arise due to catastrophic cancellation [GL89]. This happens when the number of significant
digits (16 in the case of double precision arithmetic) is not enough for the accuracy of the
result. We have tried many examples and never noticed this problem in our set of examples.
However, the numerical accuracy can be improved by using higher precision arithmetic,
implemented in software. These computations are only performed once for a manipulator
and are independent of the pose of the end—effector. As a result, they are categorized
under pre—processing computation. Given the pose of the end—effector, we compute the
values of p, ¢, r, u, v, w and substitute them to compute the entries of P, P3, Q1, Q2. Let the
corresponding numerical matrices (obtained after substitution) be Py, Py, Qq, Q..

We use SVD to compute the ranks of Q; and Q. The singular vectors obtained are
also used to eliminate #; and 6y from (11) and (12). In particular, let the singular value
decomposition of Q; be expressed as:

q _ UIEIV/T7

where U', %' and V' are 6 x 2,2 x 2 and 2 x 2 matrices, respectively. Initially we compute
the singular values, o1, 09 of Q. If both the singular values are non-zero, Q; has full rank

and let @l = Q. If either of the singular values, o; is close to 0.0 we conclude that Q; does
not have full rank. In this case we represent

/ o, 0; > €
o. =
! 0 o, <ce

where ¢ is a user defined constant to test the rank deficiency of the matrix. Furthermore we
compute the elements of U,V and represent

!
O — Y2 7. .
Q) =Y. Ui V.

g

Q, has the property that a small perturbation does not decrease the rank of the matrix.
It turns out that this property has significant impact on the accuracy of the rest of the

12

algorithm. We use Q, for eliminating ;, 0, in the system of equations (11) to obtain

5485
S54Cs
C4S5
/ S C4C

<Q1>(1)=<Pl> o | (13)
Cq
S5

Cs

We perform Gaussian elimination with complete pivoting on Q, and corresponding row and

column operations are carried on the elements of P. Depending on the rank of Q,, whether
0,1 or 2, we obtain 6,5 or 4 equations, respectively, in sines and cosines of 84,05. Each
equation corresponds to a row of X in (7).

In a similar fashion we compute the rank of Q,, as represented in (12). In case either

of the singular values is close to 0.0, we recompute the matrix Q, from the singular value
decomposition of Q,. Otherwise Q, = Q,. The modified matrix is used in eliminating ;, 0,

from (12). Depending on the rank of Q,, we may obtain anywhere from 2 to 8 equations
after elimination. Each equation corresponds to a row of ¥ in (7).

The matrix 3 is a p X 9 matrix, where 6 < p < 14. Furthermore each entry is a function
of sin(f3) and cos(fs). We choose any 6 of the p rows and break up the resulting matrix into
Y, and Y, consisting of 6 and p — 6 rows, respectively. The algorithm finds the solutions
of the equations corresponding to P¥; and back substitutes the solution into equations
corresponding to Y¥s. As a result, we solve for the system of equations represented by .

Given the 6 x 9 matrix 3y, substitute the sines and cosines of 83, 0,, 5 in terms of x5, x4
and x5, perform dialytic elimination and obtain a 12 x 12 matrix, X", whose entries are
quadratic polynomials in 3.

4.3 Reduction to Eigenvalue Problem

In this section, we reduce the problem of root finding to an eigenvalue problem. Moreover,
we exploit the structure of the resulting matrix for efficiently computing its eigenvalues.
Given the 12 x 12 matrix, ", and each of its entries is a quadratic polynomial in xs.

13

Our problem is to solve the system of linear equations

3.2
Lyl

i5

3
Ly

2..2
Lyl

Z5

1" 1" wi

$4$5

T475
Ty
3
Ts

1

O OO OO OO oo o0 o oo

We express the matrix as

¥ = Az2 4+ Bas+ C, (15)

where A, B and C are 12 x 12 matrices consisting of numerical entries. We compute the
condition number of A. The actual computation of a condition takes O(n”) time. However,
good estimators of complexity O(n?) are available and are available in LINPACK and LA-
PACK [ABB*92]. If the matrix is singular, its condition number is infinity. Let us consider
the case, when the matrix A is well conditioned. We take the matrix equation, (15), and
multiply it by A7, Let

S =TIl 4+ A'Bay + A7IC,

where I is a 12 x 12 identity matrix. In practice A™'B and A7'C are computed by linear
equation solvers. Given X , we use Theorem 1.1 [GLR82] to construct a 24 x 24 matrix M

of the form
0 I
M = (—A7IC —A'B) ’

where 0, [are 12 x 12 null and identity matrices, respectively. It follows from the structure
of M that the eigenvalues of M correspond exactly to the roots of determinant(E”) = 0.
Furthermore, the eigenvectors of M, corresponding to the eigenvalue x3 have the structure

V:(xzv), (16)

where v is the vector corresponding to the variables in (14). Thus, the eigenvectors of M
can be used to compute the roots of the equations in (14).

Lets consider the case, when the matrix A in (15) is ill-conditioned. One example of
such a case occurs, when one of the solution of inverse kinematics has #3 ~ 180. As a result,

T3 = tan(%&) ~ co. Therefore, A is nearly singular. We take the matrix equation, (15), and

14

reduce it to a generalized eigenvalue problem by constructing two matrices, My and M,

I 0 0o I
(o d) (e)

where 0,1 are 12 x 12 null and identity matrices, respectively. Furthermore, the roots of
determinant(X") = 0, correspond exactly to the eigenvalues of the generalized eigenvalue
problem M; — z3M, [GLR82]. The eigenvectors have the same structure as (16).

Computing the eigendecomposition of a generalized eigenvalue problem is costlier than
the eigenvalue problem by a factor of 2.5 to 3. In most cases, we can perform a linear
transformation and reduce the problem to an eigenvalue problem. In particular, we perform
a transformation of the form

leg + b
= 17
s Cfg —|— d7 ()

where a, b, ¢, d are random numbers. As a result of this transformation, (15) transforms into
3 = (¢* A+ ac B+ C)T2+(2ab A+ (ad+be) B+2¢d C)Ts+ (b A+bd B+d* C). (18)
Let A = a? A +ac B+¢%2 C. In most cases A is well conditioned. The only exceptions arise

(12)-(% 4

is a singular pencil. Such cases are possible, if the manipulator has less than 16 solutions.

when

A, B, C may have common singular pencils. In the latter case, A is ill conditioned for
all choices of a, b, ¢, d.

We try this transformations for a few choices of @, b, ¢, d and compute the condition num-
ber of A. The cost of estimating condition number is rather small as compared to computing
the eigendecomposition of the matrix. If A is well conditioned, solve for determinant(Elll) =0
by reducing it to an eigenvalue problem. Given T3, apply the inverse transformation to com-
pute x5. The eigenvectors have the same structure as (16), except that xs is replaced by
T3.

5 Implementation

We have implemented the algorithm on an IBM RS/6000. We have used many routines from
EISPACK and LAPACK for matrix operations. These routines are available in Fortran and
we interfaced them with our C programs. Many of the algorithms for matrix computations
have been specialized to our application. The details are given below.

5.1 Eigendecomposition

In the previous section we reduced the problem of root finding to an eigenvalue problem.
The 24 x 24 matrix, M, has 24 eigenvalues. However, according to Lemma 2.1, 8 of the

15

eigenvalues correspond to the roots of the polynomial (1 + 23)* = 0. In other words, ¢ and
—¢ are eigenvalues of M of multiplicity 4 each, where ¢ = \/—1. If we transform the variable
3, as shown in (17), these eigenvalues are suitably modified.

We use the structure of M in the eigenvalue algorithm. In the double shift QR algorithm
we chose the shift value for the first few iterations to correspond to ¢ and —:. For example,

in the single shift algorithm highlighted in (20),
H - sI = UR,

the upper triangular matrix R is singular if s corresponds to an eigenvalue of a matrix.
In other words at most four iterations of the double shift algorithm reduce the problem
to computing the eigenvalues of 16 x 16 matrix. The 16 eigenvalues of the latter matrix
correspond exactly to the 16 solutions of Q(x3) in (10).

The rest of the algorithm consists of performing orthogonal symmetric transformations
such that the matrix reduces to its real Schur form. These transformations correspond to
choosing shifts and computing the Q R decomposition of the resulting matrix.

Given the real Schur form, (21), we are only interested in computing the eigenvectors
corresponding to real eigenvalues. These eigenvalues can be easily identified by 1 x 1 diagonal
matrices R;; in (21). To account for numerical errors, we test whether the imaginary part of
the eigenvalue is less than e. For such eigenvalues, we set the imaginary part equal to zero
and it becomes a real eigenvalue of multiplicity two. In other words, the 2 x 2 matrix, R;;
corresponding to the complex eigenvalues is converted into an upper triangular matrix.

5.2 Clustering Eigenvalues

In many instances the solution has a root of multiplicity greater than one. As such the
problem of computing multiple roots can be ill-conditioned. In other words the condition
numbers for such eigenvalues can be high and the solution therefore, is not accurate. In
most instances of the problem, we have noticed that there is a symmetric perturbation in
the multiple roots. For example, let 23 = a be a root of multiplicity &k of the given equation.
The floating point errors cause the roots to be perturbed and the algorithm computes k
different roots a1, ..., ar. Moreover, | a« —«; | may be relatively high. Let o, = w&
In many cases it turns out that | @ — «, | is relatively small and «,, is very close to the
multiple roots. We can actually verify the accuracy of these computations by computing the
condition number of the eigenvalue and the condition number of a cluster of eigenvalues. The
eigendecomposition routines in LAPACK have implementation of these condition numbers

[BDMS9].

5.3 Eigenvector computation

The eigenvector corresponding to a real eigenvalue is computed by solving a quasi—upper
triangular system [GL89]. Given an eigenvector V, we use its structure, (16), to accurately
compute x4 and x5 from it. However, due to floating point errors each component of the

16

eigenvector undergoes a slight perturbation. Each term of the vector has the same bound on
the maximum error occurred due to perturbation [Wil65]. As a result, terms of maximum
magnitude generally have the minimum amount of relative error. We use this property in
accurate computation of x4 and x5. Given the eigenvector V| let

v |$3|§ 1
V1 =
z3v |z |>1

Thus, vi corresponds to elements of V, whose relative error is low. x4 and x5 can be
computed from vy by solving for

(%} 2§
V2 $2$5
V3 $2
V4 i§
Us Z5
2
Vi = U6 = 1’42 (19)
V7 TyTy
g Taly
Vg T4
V10 $§
U11 L5
V12 1

Therefore, x4 and x5 corresponds to ratio of two terms of vy. Initially, we decide whether
| 24 |> 1 or | 24 |< 1 by comparing the magnitude of v; and vy. A similar computation is
performed for determining the magnitude of x5. Depending upon their magnitudes, we tend
to use terms of maximum magnitude such that their ratios correspond to x4 and z5. As a
result we minimize the error.

5.4 Computing all Joint Angles

Given a triple (w3, x4, x5) corresponding to a solution of the 6 equations represented as the
6 X9 matrix 3. We substitute these solutions into the equation corresponding to the matrix
Y. The triple is classified as a solution of the original system if it satisfies all the equations
obtained after eliminating §; and ;. These equations are represented by the matrix 3.

Given a solution of X, solve for sy, ¢y, 53, ¢, from Q) and Q,, as shown in (13). These
solutions are substituted into (3) to compute 6.

5.5 Improving the Accuracy

The solution obtained above are back substituted into the equations EQ1-EQ6, (4). The
residues obtained are used to check the accuracy of the given solutions. To improve the

17

accuracy we use Newton’s method. If the given solution has multiplicity one, the residual
quickly converges to zero in a few iterations.

We apply the Newton’s method on the equations. We represent each equation in terms of
x;, where x; = tan(%). As a result each equation is quadratic polynomial in x;. The solution
computed from the eigenvalue algorithm highlighted above is used as the initial guess for
the Newton’s method. At each step of the iteration, we evaluate the functions and compute
the jacobian. The improved solution is computed by solving a linear system of equations.
This process is repeated till the residual is below a certain threshold, e.

The jacobian is almost singular for solutions close to higher multiplicity roots. Modified
versions of Newton’s method to handle such cases are highlighted in [DK80, Kel86].

5.6 Performance

We have applied our algorithm to many examples. In particular, we used it on 21 problem
instances given in [WM91] and verified the accuracy of our algorithm. All these problems
can be accurately solved using double precision arithmetic. In many cases we are able to
compute solutions up to 11 — 12 digits of accuracy.

For most problems, the algorithm takes about 11 milliseconds on an average on an IBM
RS/6000. The actual time varies between 9.5 milliseconds to 14 milliseconds. About 75—80%
of the time is spent in the () R algorithms for computing the eigendecomposition. Thus, better
algorithms and implementations for eigendecomposition can improve the running time even
further.

In a few cases the algorithm takes as much as 25 milliseconds on the IBM RS/6000. In
these instances the matrices A, B, C'in (15) are ill-conditioned and have singular pencils. As
a result we reduce the resulting problem to a generalized eigenvalue problem, which slows
down the algorithm.

Example 5.1 Let us consider the manipulator presented in [WM91] along with a pose of
the end effector. This is problem 6 in [WM91] and corresponds to a slight variation of the
manipulator presented in [MDS89]. For this configuration the problem of inverse kinematics
has 16 real solutions. The robot parameters are given in Table 5.1.

The position and orientation of the end effector and is given by the matrix

—0.760117 —0.641689 0.102262 —1.140165

A, _| 0133333 0.0 0.991071 0.0
hand = _().635959 0.766965 —0.085558 0.0
0 0 0 1

18

Number | Link Length | Offset Distance | Twist Angle

7 a; dZ [0

1 0.3 0.0 90.0
2 1.0 0.0 1.0
3 0.0 0.2 90.0
4 1.5 0.0 1.0
5 0.0 0.0 90.0
6 0.0 0.0 1.0

Table 1: The Denavit Hartenberg Parameters of a 6 R manipulator

After substitution into the symbolic matrices, we obtain

—1.140174 —0.0
0.0910474 —0.990920
=~ —0.0 0.684105
Q= —0.297276 —0.027314 |’
0.0 0.1127979
—0.1101672 —1.377377
0.0 0.0 0.0 —1.1401 -0.0 —0.30
0.0 0.0 —1.1401 -0.0 —0.30 0.0
0.0 0.9909 0.0 0.091 0.0989 0.0
= 0.990 0.0 0.091 0.0 0.0 —0.0989
Q= —0.0273 —-0.1128 0.2972 -0.0 1.129 0.0
—0.1127 0.0273 -0.0 —0.2972 0.0 —1.1298
0.0 1.199 0.0676 —0.12655 0.1375 —0.0623
1.1990 0.0 —0.1265 —-0.0676 —0.0622 —0.1375

The entries of Py and Py are functions of s3 and ¢3. Py is an 6 X 9 matriz,

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 .304e-4 0.0
= | 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0
0.0 0.9998 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 —.0034 —-.0034 0.0 0.0 0.0 0.0 —-0.0436 0.0
0.0 -0.399 -0.399 0.0 0.0 0.0 0.0 -2.998 0.0

0.0 0.0 0.0 0.0 0.0 0.026 0.0 0.0 0.0
0.0 0.017v4 0.01v4 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.7452 0.0 83+

0.0 —-0.999 -0.999 0.0 0.0 0.0 0.0 6.091e-5 0.0
0.0 0.1097 -0.0211 0.0 0.0 0.0 0.0 0.0174 0.0

19

0.0 0.0 0.0 0.0 1.499 0.0 0.0 0.0 0.199
0.999 0.0 0.0 -0.999 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 1.9

0.2 0.0 0.0 -0.1999 0.0 0.0 1.5 0.0 0.1038
0.0174 0.0 0.0 -0.0436 0.0 0.0 0.0 0.0 —-0.0296
-1.289 0.0 0.0 -3.208 0.0 0.0 —-0.599 0.0 0.6778

Sitmilarly Py is a 8 X 9 matrix

0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.9998 1.0 0.0 0.0 0.0 0.0 0.0 0.0
P, = 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.0174 0.0 34
0.0 0.0261 0.0 0.0 0.0 0.0 0.0 3.4904e-3 0.0
0.0 0.1999 0.1999 0.0 0.0 0.0 0.0 1.49924 0.0
0.0 1.289 -3.21 0.0 0.0 0.0 0.0 05999 0.0

0.0 —-0.01745 -6.980e-3 0.0 0.0 0.0 0.0 -0.1097 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 —-1.499 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.0174 0.0
0.0 -0.9996 0-0.9998 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0199 0.2 0.0 0.0 0.0 0.0 1.4997 0.0 s+
0.0 -0.0436 —-0.0174 0.0 0.0 0.0 0.0 -3.489e-3 0.0
0.0 —0.01047 0.0 0.0 0.0 0.0 0.0 -0.0225 0.0
0.0 3.288 1.209 0.0 0.0 0.0 0.0 -0.5996 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0261 0.0 0.0 0.0 3.49e-3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0174 0.0 0.0 -0.01745 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
—-0.9998 0.0 0.0 0.09992 0.0 0.0 0.0 -3.489e-3 0.0
—-0.40 0.0 0.0 0.3999 0.0 00 =3.0 0.0 0.0
—0.0225 0.0 0.0 -0.1083 0.0 0.0 -0.0105 0.0 0.0

The matrices Q, and Q, have no singular values close to zero. In other words they are
full rank matrices. As a result after numerical elimination we obtain a 6 X 9 matriz 3 given
as:

0.0 0.0 0.0 0.0 0.0 3.0 0.0 2.102e-4 0.0
0.0 0.0 0.0 0.0 0.0 3.0 0.0 2.1027e-4 0.0
0.0 0.9998e-1 1.0 0.0 0.0 0.0 0.0 -8.395e-6 0.0
=1 0.0 -3.489e-3 -3.4904e-3 0.0 0.0 0.0 0.0 -4.358e-2 0.0 | c3+
0.0 -0.3996 —-0.3999 0.0 0.0 0.0 0.0 -=2998 0.0
0.0 7.998e-2 —4.42 0.0 0.0 -0.3114 0.0 0.5999 0.0
0.0 -1.744e-2 -6.980e-3 0.0 0.0 -8.903e-2 0.0 -8.8644e-2 0.0

20

H Num. ‘ Figenvalue ‘ Condition Num. H

1 3679.99 9.32215
2 C123.591 11.3508
3 235.0257 771049
P “50.79} 8.82256
5 ~3.45709 10.J068
6 3.33357 9.10936
7 ~1.5689) 7.09899
g 118377 6.83255
9 ~0.673961 6.83255
10 | 0.637372 7.09899
11 | -0.299978 9.10936
12 | 0.289261 10.J068
13 | 0.0285521 771049
17 | -0.0002717] 9.32215
15 | 0.00809121 11.3508
16 | 0.019687] 8.82256

Table 2: Eigenvalues and their condition numbers

0.0
0.0
0.0
0.0
0.0
0.0
0.0

1.204e-2
1.204e-2
-4.809e-4
—0.9972
8.550e-2
-1.047e-2
—2.0784

0.6902
0.1724e — 1
0.1312
—2.679
—-0.4
-4.363e-2

0.0
0.0
0.0
0.0
0.0
0.0

1.204e-2
1.204e-2
-4.810e-4
—0.99786
-4.537e-2
0.0
2.419

0.0
0.0
0.0
0.0
0.0
0.0

—0.
—0.
—0.
—1.

0.0
0.0
0.0
0.0
0.0
0.0
0.0

6901
1724
1574
8185

0.3999
-8.724e-2

0.0
0.0
0.0
0.0
0.0
0.0
0.0

1.443e-3
1.4430e-3
-6.883e-3
2.379e-4
-5.435e-3
-8.902e-2
0.3113

0.68268
—0.3943
1.363e-2
—-0.3113
1.553e-3
-5.435e-3

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
-1.745e-2
6.0917e-5
1.744e-2
-1.396e-3
—0.5996

0.0
1.5
0.0
—0.5999 0.0
-3.0 0.0
-1.047e-2 0.0

0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

s34+

1.911
5.123e-2
-2.786e-2
0.6363
—0.2074
-6.008e-2

3 is converted into a matriz polynomial using the transformation xs = tan(

obtaining the 12 x 12 matriz ", expressed as a matriz polynomial in x5. The estimated
condition number of the leading matriz is 5000.0. As a result, we reduce it to an eigenvalue
problem of a 24 x 24 square matriz. The eigenvalues are computed using LAPACK routines.

The real eigenvalues and their condition numbers are

Thus, we see that all the 16 eigenvalues are real. Furthermore, they are computed up to

21

H) ‘ 01 02 03 04 05 06
1 | -96.284531 -6.273561 179.968858 | 38.485979 52.550848 | -39.404721
2 | -120.788383 | 172.334376 | -179.072836 | 31.331984 | -146.715199 | 142.820883
3 88.678475 | -176.724688 | -176.729058 | -63.241883 | 157.196191 | 140.436648
4 | 113.843614 5.306382 | -177.744286 | -55.924163 | -62.984868 | -43.377340
5 | -178.126206 | 108.191647 | -147.733832 | -5.693263 | -164.674567 | 179.580633
6 | 168.321914 | -103.892172 | 146.603790 | -17.240912 | -171.879220 | 98.164928
7 | -12.942930 | -105.096318 | -114.975385 | 3.023449 7.416983 -79.421763
8 2.517222 108.075883 | 112.043149 | -10.522960 0.005115 -0.109419
9 2.517222 108.075883 | -67.956851 | -169.477040 | 179.994885 | 179.890581
10 | -12.942930 | -105.096318 | 65.024615 | 176.976551 | 172.583017 | 100.577967
11 | 168.321914 | -103.892172 | -33.396210 | -162.759088 | -8.120780 | -81.834797
12 | -178.126206 | 108.191647 | 32.266168 | -174.306737 | -15.325433 | -0.419367
13 | 88.678475 | -176.724688 | 3.270942 | -116.758117 | 22.803809 | -39.563352
14 | -96.284531 -6.273561 -0.031142 141.514021 | 127.449152 | 140.595279
15 | -120.788383 | 172.334376 0.927164 148.668016 | -33.284801 | -37.179117
16 | 113.843614 5.306382 2.255714 | -124.075837 | -117.015132 | 136.622660

Table 3: The joint angles corresponding to the solutions

15 digits of accuracy. This follows from the fact that the machine constant for IEEFE floating
point arithmetic is of the order of 107'¢ and the maximum condition number is of the order of
11. As a result, the eigenvalues have a relative error bounded by 10715, Given the eigenvalues,
the rest of the algorithm involves computation of rest of the corresponding eigenvectors and
joint angles. Let’s illustrate the process for the first eigenvalue, x5 = 3679.99. As a result,

s3 = 0.00054348, c3 = —0.999999.

Since | x3 |> 1, we make vy equal to the last 12 elements of V the eigenvector, as shown
in (19). Analyzing the elements of vy results in | x4 |< 1 and | x5 |< 1. Elements of
maximum magnitude of vi are used to compute x4 and x5 to the best possible accuracy. It
results in x4 = 0.34907 and x5 = 0.49368. These are used to compute sl,s2, cl, c2 by solving
a system of linear equations. Finally, these values are plugged into the original equations,
EQ1 — —EQ6 to compute s6 and ¢6.

Given the sines and cosines of the joint angles, s; and ¢;, their accuracy is improved by
using a few iterations of the Newton’s method and computing the residuals on EQ1 — —FEQ6.
As a result, it is possible to obtain solutions to 12 digits of accuracy on this example. The
16 solutions for this position and orientation of the end-effector are given in Table 6.3.

More examples highlighting configurations with higher multiplicity solutions are high-
lighted in [MC92].

22

6 General Serial Manipulators

The techniques presented above can be extended to any serial manipulators with a finite
number of solutions. The joints may be prismatic or revolute. In particular, Raghavan and
Roth have shown that for many cases of manipulators with six joints (revolute or prismatic)
the problem of inverse kinematics reduces to finding roots of a univariate polynomial [RR92].
Our algorithm can be extended to all such manipulators. For each class of manipulator, dit-
ferent symbolic computations are performed by taking into account different joint variables.
The rest of the numerical steps are similar.

The real time algorithm has also been used for computer animation and physical based
modeling. More details are given in [MC92].

7 Conclusion

In this paper we presented a real time algorithm for inverse kinematics of a 6 R manipulator
of general geometry. The algorithms performs symbolic preprocessing, matrix computations
and reduces the problem to computing the eigendecomposition of a matrix. The numerical
accuracy of the operations used in the algorithm is well understood. For most instances
of the problem the solution can be accurately computed using double precision arithmetic.
The algorithm has been tested on a variety of instances and the average running time is
11 milliseconds on an IBM RS/6000. We believe that this algorithm gives us a level of
performance expected of industrial manipulators. This approach can be directly extended
to all serial manipulators with a finite number of solutions.

References

[AATI] H. Albala and J. Angeles. Numerical solution to the input output displacement
equation of the general 7r spatial mechanism. In Proceedings of the Fifth World
Congress on Theory of Machines and Mechanisms, pages 1008-1011, 1979.

[ABB*92] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, 5. Hammarling, and D. Sorensen. LAPACK User’s Guide, Release 1.0.
SIAM, PHILADELPHIA, 1992.

[BDM89] 7. Bai, J. Demmel, and A. McKenney. On the conditioning of the nonsymmetric
eigenproblem: Theory and software. Computer Science Dept. Technical Report

469, Courant Institute, New York, NY, October 1989. (LAPACK Working Note
#13).

[DC80] J. Duffy and C. Crane. A displacement analysis of the general spatial 7r mech-
anism. Mechanisms and Machine Theory, 15:153—-169, 1980.

23

[Dem89]

[DH55]

[DKS0]

[GBDMT7]

[GLSY]

[GLRS2]

[Gol91]

[Hay83]

[Kel86]

[L.1.88a]

[LL88b]

[MC92]

[MDS9]

[Pie68]

[Prig6]

J. Demmel. LAPACK: A portable linear algebra library for supercomputers. In
Proceedings of the 1989 IEEE Control Systems Society Workshop on Computer-
Aided Control System Design, Tampa, FL, Dec 1989. IEEE.

J. Denavit and R.S. Hartenberg. A kinematic notation for lower—pair mechanisms
based upon matrices. Journal of Applied Mechanics, 77:215-221, 1955.

D. W. Decker and C. T. Kelley. Newton’s method at singular points I. SIAM J.
Num. Anal., 17:66-70, 1980.

B.5. Garbow, J.M. Boyle, J. Dongarra, and C.B. Moler. Matriz Figensystem
Routines — EISPACK Guide Ertension, volume 51 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1977.

G.H. Golub and C.F. Van Loan. Matriz Computations. John Hopkins Press,
Baltimore, 1989.

I. Gohberg, P. Lancaster, and L. Rodman. Matriz Polynomials. Academic Press,
New York, 1982.

D. Goldberg. What every computer scientist should know about floating point
arithmetic. ACM Computing Surveys, 23(1), 1991.

S.A. Hayati. Robot arm geometric link calibration. In IEEE Control and Deci-
ston Conference, pages 1477-1483, 1983.

C. T. Kelley. A Shamanskii-like acceleration scheme for nonlinear equations at

singular roots. Math. Comp., 47:609-623, 1986.

H.Y. Lee and C.G. Liang. Displacement analysis of the general spatial 7-link 7r
mechanism. Mechanisms and Machine Theory, 23(3):219-226, 1988.

H.Y. Lee and C.G. Liang. A new vector theory for the analysis of spatial mech-
anisms. Mechanisms and Machine Theory, 23(3):209-217, 1988.

D. Manocha and J.F. Canny. Real time inverse kinematics of general 6r manipu-
lators. Technical Report ESRC 92-2, RAMP 92-1, Engineering System Research
Center, University of California, Berkeley, 1992.

R. Manseur and K.L. Doty. A robot manipulator with 16 real inverse kinematic
solution set. International Journal of Robotics Research, 8(5):75-79, 1989.

D. Pieper. The kinematics of manipulators under computer control. PhD thesis,
Stanford University, 1968.

E.J.F. Primrose. On the input—output equation of the general 7r—mechanism.

Mechanisms and Machine Theory, 21:509-510, 1986.

24

[RRSY]

[RR92

[RRST3]

[SSNS6]

[SV89]

[TMS85]

[VWS8T]

[Wil59]

[Wil63]

[Wil65]

[WL84]

[WMO1]

M. Raghavan and B. Roth. Kinematic analysis of the 6r manipulator of general
geometry. In International Symposium on Robotics Research, pages 314-320,
Tokyo, 1989.

M. Raghavan and B. Roth. Inverse kinematics of the general 6r manipulator and
related linkages. Transactions of ASME, Journal of Mechanical Design, 1992.
To appear.

B. Roth, J. Rastegar, and V. Scheinman. On the design of computer controlled
manipulators. In On the Theory and Practice of Robots and Manipulators, pages
93-113. First CISM IFToMM Symposium, 1973.

H.W. Stone, A.C. Sanderson, and C.P. Neuman. Arm signature identification.
In IEEE Conference on Robotics and Automation, pages 41-48, 1986.

M.W. Spong and M. Vidyasagar. Robot Dynamics and Control. John Wiley and
Sons, 1989.

L.W. Tsai and A.P. Morgan. Solving the kinematics of the most general six and
five-degree-of-freedom manipulators by continuation methods. Transactions of
the ASME, Journal of Mechanisms, Transmissions and Automation in Design,

107:189-200, 1985.

W.K. Veitschegger and C. Wu. A method for calibrating and compensating
robot kinematic errors. In IFEE Conference on Robotics and Automation, pages

39-43, 1987.

J.H. Wilkinson. The evaluation of the zeros of ill-conditioned polynomials. parts

i and 1. Numer. Math., 1:150-166 and 167-180, 1959.

J.H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1963.

J.H. Wilkinson. The algebraic eigenvalue problem. Oxtord University Press,
Oxford, 1965.

D.E. Whitney and C.A. Lozinski. Industrial robot calibration methods and re-
sults. In Proceedings of the International Computers in Fngineering Conference,

pages 92-100, 1984.

C. Wampler and A.P. Morgan. Solving the 6r inverse position problem using a
generic-case solution methodology. Mechanisms and Machine Theory, 26(1):91—
106, 1991.

25

8 Appendix

In this section we review the matrix computations used in our kinematics algorithm and
also present a sample of the MAPLE program used in symbolic preprocessing for the 6 R
manipulator algorithm.

8.1 Matrix Computations

In this section we present techniques from linear algebra and numerical analysis. We also
highlight the numerical accuracy of the problems and the algorithm used to solve those
problems in terms of their condition numbers.

8.2 Hessenberg Matrix

A Hessenberg matrix is of the form

hll h12 h13 Ce hln

h21 h22 h23 Ce hgn

0 haz hss e hsy,

H=1 0 0 hy ... hy
0 ... 0 hun ha,

In other words it is like an upper triangular matrix, except all that the subdiagonal elements
may be non-zero. Given a matrix A, it can be converted into a Hessenberg matrix using
similarity transformations of the form QAQ™!, where Q is an orthogonal matrix. Q is an
orthogonal matrix if QQ? =L

8.3 QR Factorization

The QR factorization of an m X n matrix A is given by
A = QR,

where Q is an m X m orthogonal matrix and R is an m X n upper triangular matrix. More
details on its computations are given in [GL89)].

8.4 Singular Value Decomposition

The singular value decomposition (SVD) is a powerful tool which gives us accurate infor-
mation about matrix rank in the absence of round off errors. The rank of a matrix can also
be computed by Gauss elimination. However, there arise many situations where near rank
deficiency prevails. Rounding errors and fuzzy data make rank determination a non—trivial
exercise. In these situations, the numerical rank is easily characterized in terms of the SVD.

26

Given A, a m x n real matrix then there exist orthogonal matrices U and 'V such that
A =UxV’

where U is a m X n orthogonal matrix, V is n x n orthogonal matrix and 3 is a n X n
diagonal matrix of the form
3 =diag(oy,02,...,0,).

Moreover, oy > 03 > ... > 0, > 0. The o;’s are called the singular values and columns of U
and V, denoted as u;’s and v;’s, are known as the left and right singular vectors, respectively
[GL89]. The relationship between the elements of A, singular values and singular vectors
can be expressed as:
A =3%_10:Un Vi,

where A;;, U;;, 'V, represent the element in the ¢th row and jth column of A, U and V,
respectively.

The singular values give accurate information about the rank of the matrix. The matrix
A has rank k£ < n, if o441 =0, 0432 = 0,...,0, = 0. Furthermore, the smallest positive
singular value gives us information about the closeness to a rank deficient matrix [GL89)].

8.5 [Eigenvalues and Eigenvectors
Given a n X n matrix A, its eigenvalues and eigenvectors are the solutions to the equation
Ax =)x,

where)\ is the eigenvalue and x # 0 is the eigenvector. The eigenvalues of a matrix are the
roots of its characteristic polynomial determinant(A — AI) = 0. As a result, the eigenvalues
of a diagonal matrix, upper triangular matrix or a lower triangular matrix correspond to the
elements on its diagonal. Efficient algorithms for computing eigenvalues and eigenvectors are
well known, [GL89], and their implementations are available as part of packages EISPACK,
[GBDM77], and LAPACK [Dem89, ABB*92]. Most algorithms make use of the similarity
transformations of the form A" = QAQ~"', where Q is any non-singular n x n matrix.
This transformation has the characteristic that the eigenvalues of A and A’ are identical.
Furthermore, if y is an eigenvector of A', Q 'y is an eigenvector of A. Standard algorithms
for eigenvalue computations, like the QR algorithm, choose Q to be an orthogonal matrix,
since similarity transformation by an orthogonal matrix is a numerically stable operation
[GL89]. Given A the eigendecomposition algorithm converts it into a Hessenberg matrix
using a sequence of similarity transformations by orthogonal matrices. That is,

H=Q'AQ,

where Q is an orthogonal matrix and H is an Hessenberg matrix. Given H, the eigende-
composition algorithm proceeds by similarity transformations by orthogonal matrices. Each
of these similarity transformation corresponds to a ()R iteration of the form:

H - sI=UR, (20)

27

where s is a scalar referred to as a shift, U is an orthogonal matrix and R is an upper
triangular matrix. This step corresponds to () R factorization of the matrix H — sI. Given
U and R, the next step of the iteration computes a modified Hessenberg matrix given by

H = RU + sL.

The shifts are chosen appropriately such that the matrix converges to its to its real Schur

decomposition of the form [GL89, Wil65]:

Ry Ris ... R,
0 R e Ry

QAQ_I - : :22 : 2 ’ (21)
0 0 ... Roun

where each R;; is either a 1 X1 matrix or a 2 x 2 matrix having complex conjugate eigenvalues.
Given the real Schur decomposition, computing the eigenvalues is a trivial operation. Many
a times a matrix has complex eigenvalues, the above algorithm is modified to double shift
consisiting of a complex number and its conjugate. More details are given in [GL89]. We
will use the QR algorithm with double implicit shift strategy to compute the real Schur
decomposition. Given the matrix eigenvalues, real Schur decomposition and matrix Q,
computing eigenvectors corresponds to solving quasi triangular systems [GL89, Wil65]. The
running time of these algorithms is O(n®). However, the constant in front of n® can be as
high as 25 for computing all the eigenvalues and eigenvectors.

8.6 Generalized Eigenvalue Problem

Given n x n matrices, A and B, the generalized eigenvalue problem corresponds to solving
Ax = ABx.

We represent this problem as eigenvalues of A — AB. The vectors x # 0 correspond to the
eigenvectors of this equation. If B is non-singular and its condition number (defined in the
next section) is low, the problem can be reduced to an eigenvalue problem by multiplying
both sides of the equation by B™! and thereby obtaining:

B 'Ax = \x.

However, B may have a high condition number and such a reduction can cause numerical
problems. Algorithms for the generalized eigenvalue problems apply orthogonal transforma-
tions to A and B. In particular, we use the () Z algorithm for computing the eigenvalues and
eigenvectors for this problem [GL89]. Its running time is O(n”). However, the constant can
be as high as 75. Generally, it is slower by a factor of 2.5 to 3 as compared to () R algorithm
for computing eigenvalues and eigenvectors of a matrix.

28

8.7 Condition Numbers

The condition number of a problem measures the sensitivity of a solution to small changes
in the input. A problem is ill-conditioned if its condition number is large, and ill-posed
if its condition number is infinite. These condition numbers are used to bound errors in
computed solutions of numerical problems. More details on condition numbers are given in
[GL89, Wil65]. The implementations of these condition number computations are available
as part of LAPACK [BDMS9].

In our algorithm, we will be performing computations like linear equation solving and
computing eigenvalues and eigenvectors of a matrix. Therefore, we will be concerned with
the numerical accuracy of these operations.

8.8 Condition Number of a Square Matrix

The condition number of a square matriz corresponds to %, where o7 and o, are the
largest and smallest singular values. This condition number is used in determining the ac-
curacy of A~! computation or solving linear systems of the form Ax = b. Computing the
singular values takes O(n?) time, which is rather expensive. Good estimators of O(n*) com-
plexity, once Ax = b has been solved via Gaussian elimination, are available in LINPACK
and LAPACK and we use them in our algorithm.

8.9 Condition Number of Simple Eigenvalues

Let A be a simple® eigenvalue of the n x n matrix, A, with unit right eigenvector x and unit
left eigenvector y. That is, Ax = Ax, yTA = \yT and || x |[o=|| y |lo= 1. Here || v ||
stands for the 2-norm of a vector. Let P = (x-yT)/(y? - x) be the spectral projector.
Therefore, || P ||2= y+x| Let E be a perturbation of A, and ¢, =|| E ||;. Moreover, let \

be the perturbed eigenvalue of A + E. Then
[N =A< el P +0().
Thus, for sufficiently small perturbations in the matrix, the perturbation in the eigenvalues

is a function of || P ||5.

8.10 Condition Number of Clustered Eigenvalues

In many cases we are interested in computing the condition numbers of a cluster of eigen-
values. We use these condition numbers in determining the accuracy of eigenvalues with
multiplicity greater than one. We represent the real Schur decomposition as

[A Ap
V(R

A simple eigenvalue is an eigenvalue of multiplicity one.

29

and the eigenvalues of the m x m matrix Ay; are exactly those we are interested in. In
particular we are interested in bounding the perturbation in the average of the eigenvalues
of the cluster, represented as A = trace(A;)/m.

To compute the error bound, we define the spectral projector

I, R
2= (% 0)

where R satisfies the system of linear equations
AllR - RA22 — A12.

Thus, || P |l;= (1+ || R ||2)"/2. Computing || P ||, is expensive and a cheaper overestimate
is obtained as

1P = (1+ | R |[7)"2

Let E be the perturbation of A and e; =|| E ||2. Let Y be the average of the perturbed
eigenvalues. Then

A=A S alP . +0(q).

We substitute || P ||' to obtain a slightly weaker bound on the perturbation in A for suffi-
ciently small €;,. The average of a cluster is often much better conditioned than individual
eigenvalues in the cluster.

8.11 Accuracy of Right Eigenvectors

As far as eigenvectors are concerned, bounds for their accuracy are given in detail in [Wil65,
ABB'192]. However, we will not be computing these bounds to analyze the accuracy of
our computation. The actual bounds tell us about the maximum error in any term of the
eigenvector. We only assume that each term of the eigenvector has a similar bound on the
absolute error. Thus, the terms of maximum magnitude have the smallest bound on their
relative error.

8.12 Symbolic Preprocessing Program

MAPLE program for symbolic preprocessing of inverse kinematics.
Given a n-jointed robot manipulator, with any combination of joints
(prismatic or revolute), and the variables defining the position

of end-effector (six of them), this program eliminates five of the joint
variables. In other words it is computing the sparse resultant of the
given system of equations.

In the following example the symbolic derivation of the entries of
matrices P and Q for general 6R is presented. Fach entry of P and

30

Q is a function of the robot manipulator parameters and the variables
representing the position of the end effector. A lot of properties

related to the geometry of the manipulator can be interpreted from

the linear algebra structure of P and Q.

We use the Denavit-Hartenberg notation.

with(linalg);
readlib(evalm);
readlib(write);

X1, ..., X6 are the joint angles. They are the variable, which will be
eliminated.

Cl:=cos(X1); C2:=cos(X2); C3:=cos(X3);
C4:=cos(X4); C5:=cos(Xb); C6:=cos(X6);
S1:=sin(X1); 52:=sin(X2); 93 :=sin(X3);
S4 = sin(X4); S5:=sin(X5); 96 := sin(X6);

Y1, ..., Y6 are the twist angles.

M1 :=sin(Y1l); M2:=sin(Y2); M3:=sin(Y3);
M4 :=sin(Y4); M5 :=sin(Yb); M6 :=sin(Y6);
L1:=cos(Y1); L2:=cos(Y2); L3:=cos(Y3);
L4 :=cos(Y4); L5:=cos(Y5); L6:=cos(Y6);

Ix.ly.lz,mx, my,mz,nx,ny,nz correspond to the entries of the orthogonal # matrix defining
the orientation of the end-effector.

u:=ma *x M6 4+ nx x L6;

vi=my*x M6 + ny *x L6;

w:=mzx M6 + nz* L6;

pi=—le*ab — (max* M6 + nx * L6) % d6 + qux;
q:= —ly*ab — (my « M6 + ny * L6) * d6 + qy;
r:=—lzxab — (mz* M6 +nz* L6) * db + ¢z;

bl := Cl*xu+ S1*wv;
b2 := —L1* (Sl*xu—Cl*v)+ ML *w;
b3 := M1 % (Sl*xu—Cl+*v)+ L1 *w;

hl:=Cl*xp+ S1*xq— al;

h2:=—L1+(Sl+p—Clxq)+ M1 x(r—dl);
h3 := M1 (S1*p—Clxq)+ L1 *(r—dl);

31

ml := S5« Mb;
m2:= C5x L4 x M5+ M4 * Lb;
m3:= —Ch*x M4+ M5+ L4 * L5;

gl :=Ch*ab+ a4;
g2 := =S5 L4« ab+ M4 * db;
g3 := Shx M4 xad + L4 xdb + d4;

rl := C4xml+ S4+m2;
r2:= —L3* (S4%xml — C4*m2) + M3 xm3;
r3 = M3 * (S4*xml — C4xm2) + L3+ m3;

fl:=Cdxgl + S4*g2+ a3;
f2:=—=L3*(S4*gl — Cdxg2)+ M3 * g3;
f3:=M3*(S4xgl —Cd*g2)+ L3 % g3+ d3;

LM := array([[C3,5 70]7[53,—037 0],[0,0,1]]);
RM := array([[C2,52,0],[52,-C2,0],[0,0,1]]);
CM :=array([[1,0, ,— L2, M?2],[0, M2, L2]]);

0, [0
F= ClTTCly([fl 12, 3])7
H :=array([h1, h2, h3]);
R :=array([rl,r2 r3]),
B := array([bl, b2, b3)]);
C :=array(la2,0,d2]);
PL :=multiply(RM, H);
PR := add(multiply(multiply(CM, LM), F'), C);
LL :=multiply(RM, B);
LR := multiply(multiply(CM, LM), R);

These are the left and right hand sides of the six equations # defining the kinematics
problem.

Leql := PL[1]; Leq2:= PL[2]; Leq3:= PL[3];

Reql := PR[1]; Req2:= PR[2]; Req3:= PR[3];

Leqd := LL[1]; Legb:= LL[2]; Leq6:= LL[3];

Reqd := LR[1]; Req¢5:= LR[2]; Req6 := LR[3];

Using dot and cross products of 6 equations to derive the rest of # the 8 equations.
temp := dotprod(PL, PL); LeqT := simpli fy(temp);

temp := dotprod(PR, PR); ReqT := simplify(temp);

temp := dotprod(PL,LL); Leq8 := simpli fy(temp);

temp := dotprod(PR, LR); Req8 := simplify(temp);

vtemp := crossprod(PL,LL); Leq9 := simpli fy(vtemp[l]);

32

Leql0 := simplefy(vtemp[2]); Leqll := simpli fy(vtemp[3]);
vtempl := crossprod(PR, LR); Req9 := simpli fy(vtempl[1]);
Reql0 := simpli fy(vtempl[2]); Reqll := simpli fy(vtempl[3]);
templ := scalarmul(LL, LeqT); temp2 := —2 x Leq8,;

temp3 := scalarmul(PL,temp2); vtemp2 := add(templ,temp3);
Leql12 := simpli fy(vtemp2[l]); Leql3 := simpli fy(vtemp2[2]);
Leql4 := simpli fy(vtemp2[3]);

templ := scalarmul(LR, ReqT); temp2:= —2 % Req8;

temp3 := scalarmul(PR,temp2); vtemp3 := add(templ,temp3);
Reql12 := simpli fy(vtemp3[l]); Reql3 := simpli fy(vtemp3[2]);
Reql4 := simpli fy(vtemp3[3]);

##

Collecting various coefficients from the 14 equations.
Imat := array(1..14,1..9);

The following set of calls is repeated for the right hand side of
each equation, Reql-Reql4.
As a result the matrix coefficients are being computed.

row :=1; exp:= expand(Reql); exp:= collect(exp,cos(X3));

temp 1= coef f(exp, cos(X3),2); exp:=exp—temp* cos(X3) * cos(X3);
temp := coef f(exp, cos(X3),3);

exp = exp — temp * cos(X3) * cos(X3) * cos(X3);

exp = collect(exp, cos(X4)); temp := coef f(exp,cos(X4),2);

exp = exp — temp * cos(X4) % cos(X4); temp:= coef f(exp, cos(X4),3);
exp = exp — temp * cos(X4) * cos(X4) * cos(X4);

exp = collect(exp, cos(X)));

temp 1= coef f(exp, cos(X5),2); exp:=exp—temp* cos(X5) * cos(XD);
temp := coef f(exp, cos(X5),3);

exp = exp — temp * cos(X5) * cos(X5) * cos(XD);

exp = collect(exp, sin(X3)); temp := coef f(exp, sin(X3),2);

exp = exp — temp * sin(X3) * sin(X3); temp := coef f(exp, sin(X3),3);
exp = exp — temp * sin(X3) * sin(X3) * sin(X3);

exp = collect(exp, sin(X4));

temp 1= coef f(exp, sin(X4),2); exp:=exp—temp* sin(X4) * sin(X4);
temp := coef f(exp, sin(X4),3);

exp = exp — temp * sin(X4) * sin(X4) * sin(X4);

exp := collect(exp, sin(X5)); temp := coef f(exp, sin(X5),2);

exp = exp — temp * sin(XDH) * sin(XD); temp := coef f(exp, sin(XH),3);
exp = exp — temp * sin(XD) * sin(XD) * sin(XD); exp:= expand(exp);

33

exp = collect(exp, sin(X4)); expl := coef f(exp, sin(X4));

exp2 := expand(exp — expl * sin(X4)); expl := collect(expl, sin(XH));

expd = coef f(expl, sin(XD5)); expd:= expand(expl — exp3 * sin(X5H));
expd = collect(expd, cos(XD)); exph := coef f(expd, cos(X5));

expb 1= expand(expd — expb * cos(XH)); exp2 := collect(exp2, cos(X4));
expl = coef f(exp2, cos(X4)); exp8 := expand(exp2 — expT * cos(X4));
expT = collect(expT, sin(X5)); exp9 := coef f(expT?, sin(X5));

expl0 := expand(expl — exp9 * sin(X5)); expl0 := collect(expl0, cos(X5));
expll := coef f(expl0, cos(X5)); expl2:= expand(expl0 — expll * cos(X5));
exp8 := collect(exp8, cos(XD)); expld := coef f(exp8, cos(XH));

expld ;= expand(exp8 — expl3 * cos(XD)); expld := collect(expld, sin(XH));
expld 1= coef f(expld, sin(X5));

Imat[row, 1] := exp3; Imatrow,?2] := expd; Imat[row,3] := exp9;
Imat[row,4] := expll; Imat[row,5] := expb; Imat[row,6]:= expl2;
Imat[row, 7] := expld; Imat[row,8] := expl3;

check := expand(Reql — Imat[row, 1] * S4 * S5 — Imat[row, 2]« S4 + C5 —
Imat[row, 3] * C4 *x S5 — Imat[row, 4] « C4 x C'5 — lmat[row, 5] * S4 — Imat[row, 6] *
C4 — Imatlrow, 7] * S5 — Imat[row, 8] « C5); Imat[row,9] := check;

The following set of calls is repeated for the left hand side of
each equation, Leql-Leql4.
As a result the matrix coefficients are being computed.

rmat ;= array(1..14,1..9);

row :=1; exp:= expand(Leql); exp:= collect(exp,sin(X1));

expl := coef f(exp,sin(X1)); exp2:= expand(exp — expl * sin(X1));

expl := collect(expl, sin(X2)); exp3 := coef f(expl,sin(X2));

expd = expand(expl — exp3 * sin(X2)); expd := collect(expd, cos(X2));
expb = coef f(expd, cos(X2)); expb := expand(expd — expd * cos(X2));
exp2 = collect(exp2, cos(X1)); expl := coef f(exp2, cos(X1));

exp8 := expand(exp2 — expT * cos(X1)); expT := collect(expT, sin(X2));
exp9 := coef f(expT, sin(X2)); expl0:= expand(expT — exp9 * sin(X2));
expl0 := collect(expl0, cos(X2)); expll := coef f(expl0, cos(X2));

expl2 := expand(expl0 — expll * cos(X2)); exp8 := collect(exp8, cos(X2));
expl3 = coef f(exp8, cos(X2)); expld = expand(exp8 — expl3d * cos(X2));
expld := collect(expld, sin(X2)); expld := coef f(expld, sin(X2));

rmat[row, 1] := exp3; rmat[row,?2] := expb; rmatlrow,3] := exp9;
rmat[row,4] := expll; rmat[row,5] := expb; rmat[row,6] := expl2;
rmat[row, 7] := expld; rmat[row,8] := expl3;

check := expand(Leql — rmat]row, 1] * S1 % S2 — rmat[row,2] « S1* C2 —
rmat[row, 3] * C'1 % S2 — rmat[row, 4] * C1 x C2 — rmat[row, 5] * ST — rmat[row, 6]« C'1

34

— rmat[row, 7] * S2 — rmat[row, 8] x C'2);
rmat[row, 9] := check;

We break up the linear system of 14 equations into two different sets
of equations.

Rsysl := array(1..
Rsys2 := array(1..
Lsysl := array(1..
Lsys2 := array(l..

—‘—‘»—\}—\

for ¢ from 1 by 1 to 8 do
for g from 1 by 1to8do
temp := rmatli, jl;

Rsysl[i, 7] := temp;

temp := lmatli, j];

temp := collect(temp, cos(X3));
temp := collect(temp, sin(X3));
Lsysl[i, j] := temp;

od,;
temp = Imat[i, 9] — rmatli, 9];
temp := collect(temp, cos(X3));
temp := collect(temp, sin(X3));
Lsysl[e,9] := temp;

od,;
for v from 9 by 1 to 14 do
for g from 1 by 1to8do
temp := rmatli, jl;

Rsys2[i — 8, j] := temp;

temp := lmatli, j];

temp := collect(temp, cos(X3));
temp := collect(temp, sin(X3));
Lsys2[i — 8, 7] := temp;

od,;
temp = Imat[i, 9] — rmatli, 9];
temp := collect(temp, cos(X3));
temp := collect(temp, sin(X3));
Lsys2[t — 8,9] := temp;

od;

?

Rsim]1 := array(1..6,1..2);

35

Rsim?2 := array(1..8,1..6
Lsim1 := array(1..6,1..9);
1..8,1..9

Lsim?2 := array(1..8,1..

Rsim?2[1,1] := Rsysl[1,1];
Rsim?2[1,4] := Rsysl[1,4];
Rsim?2[2,1] := Rsysl[2,1];
Rsim?2[2,4] := Rsysl[2,4];
Rsim?2[3,1] := Rsysl[4,1];
Rsim?2[3,4] := Rsysl[4,4];
Rsim?2[4,1] := Rsysl[5, 1];
Rsim?2[4,4] := Rsysl[5,4];
Rsim?2[5,1] := Rsys2[1,1];
Rsim?2[5,4] := Rsys2[1,4];
Rsim?2[6,1] := Rsys2[2,1];
Rsim?2[6,4] := Rsys2[2,4];
Rsim?2[7,1] := Rsys2[4,1];
Rsim?2[7,4] := Rsys2[4,4];
Rsim?2[8,1] := Rsys2[5, 1];
Rsim?2[8,4] := Rsys2[5,4];

for e from 1 by 1to9 do
Lsim2[1,1] := Lsysl[1,1];
od,;

for e from 1 by 1to9 do
Lsim2([2,1] := Lsysl[2,1];
od,;

for e from 1 by 1to9 do
Lsim?2[3,1] := Lsysl[4,];
od,;

for e from 1 by 1to9 do
Lsim?2[4,1] := Lsysl[5,];
od,;

for e from 1 by 1to9 do
Lsim?2[5,1] := Lsys2|[1,1];
od,;

for e from 1 by 1to9 do
Lsim?2[6,1] := Lsys2[2,1];
od,;

for e from 1 by 1to9 do
Lsim?2[7,1] := Lsys2[4,];

Rsim?2[1,2] := Rsysl[1,2];
Rsim?2[1,5] := Rsysl[1,7];
Rsim?2[2,2] := Rsysl[2,2];
Rsim?2[2,5] := Rsysl[2,7];
Rsim?2[3,2] := Rsysl[4,2];
Rsim?2[3,5] := Rsysl[4,7];
Rsim?2[4,2] := Rsysl[5,2];
Rsim?2[4,5] := Rsysl[5,7];
Rsim?2[5,2] := Rsys2[1,2];
Rsim?2[5,5] := Rsys2[1,7];
Rsim?2[6,2] := Rsys2[2,2];
Rsim?2[6,5] := Rsys2[2,7];
Rsim?2[7,2] := Rsys2[4,2];
Rsim?2[7,5] := Rsys2[4,7];
Rsim?2[8,2] := Rsys2[5,2];
Rsim?2[8,5] := Rsys2[5,7];

36

od,;
for v from 1 by 1109 do
Lsim?2[8,i] := Lsys2[5,1];

od;

?

Rsiml[1,1] := Rsys1[3,5];
Rsiml[2,2] := Rsysl[6,6];
Rsiml1[4,1] := Rsys1[8,5];
Rsiml[5,2] := Rsys2[3,6];

for e from 1 by 1to9 do
Lsim1[1,1] := Lsysl[3,];
od,;
for e from 1 by 1to9 do
Lsim1[2,1] := Lsysl[6,];
od,;
for e from 1 by 1to9 do
Lsim1[3,1] := Lsysl[7,1];
od,;
for e from 1 by 1to9 do
Lsim1[4,1] := Lsysl[8,1];
od,;
for e from 1 by 1to9 do
Lsim1[5,1] := Lsys2[3,];
od,;
for e from 1 by 1to9 do
Lsim1[6,1] := Lsys2[6,];
od;

?

Rsiml[1,2] := Rsysl[3,6];
Rsiml[3,1] := Rsysl[7,5];
Rsiml[4,2] := Rsysl[8,6];
Rsiml[6, 1] := Rsys2[6,5];

Rsiml[2,1] := Rsysl[6,5];
Rsiml[3,2] := Rsysl[7,6];
Rsiml[5,1] := Rsys2[3,5];
Rsiml[6,2] := Rsys2[6,6];

The 6 X 2 matrix, Rsim1, corresponds exactly to)1, a minor of Q.
Fach entry of Rsim1 is a function of constants like manipulator parameters

and the right hand side variables.

The 8 X 6 matrix, Rsim2, corresponds exactly to)2, a minor of Q.
Fach entry of Rsim1 is a function of constants like manipulator parameters

and the right hand side variables.

The 6 X 9 matrix, Lsim1, corresponds exactly to P, a minor of P.
Fach entry of Lsiml is a linear function of 53 and C3. The coeffcients
are functions of the constants.

The 8 X 9 matrix, Lsim2, corresponds exactly to P, a minor of P.

37

Fach entry of Lsim2 is a linear function of 53 and C3. The coefficients
are functions of the constants.

38

