
Real Time Inverse Kinematics for General
�R Manipulators

Dinesh Manocha�

John F� Canny�

Computer Science Division

Department of Electrical Engineering and Computer Science

University of California at Berkeley
Berkeley� CA �����

Abstract� The inverse kinematics of serial manipulators is a central problem in the
automatic control of robot manipulators� The main interest has been in inverse kinematics
of a six revolute jointed manipulator with arbitrary geometry� It has been recently shown that
the joints of a general �R manipulator can orient themselves in �� di�erent con�gurations 	at
most
� for a given pose of the end�e�ector� However� there are no good practical solutions
available� which give a level of performance expected of industrial manipulators� In this
paper� we present an algorithm and implementation for real time inverse kinematics for a
general �R manipulator� When stated mathematically� the problem reduces to solving a
system of multivariate equations� We make use of the algebraic properties of the system and
the techniques used for reducing the problem to solving a univariate polynomial� However�
the polynomial is expressed as a matrix determinant and its roots are computed by reducing
to an eigenvalue problem� The other roots of the multivariate system are obtained by
computing eigenvectors and substitution� The algorithm involves symbolic preprocessing�
matrix computations and a variety of other numerical techniques� The numerical accuracy
of these operations is well understood and for most cases we are able to compute accurate
solutions using double precision arithmetic� The average running time of the algorithm� for
most cases� is �� milliseconds on an IBM RS��


 workstation� This approach is applicable
to inverse kinematics of

all serial manipulators�

�Supported by IBM Graduate Fellowship� David and Lucile Packard Fellowship and National Science
Foundation Presidential Young Investigator Award �� IRI�	
�	���
�

�Supported in part by David and Lucile Packard Fellowship and National Science Foundation Presidential
Young Investigator Award �� IRI�	
�	���
�



� Introduction

The inverse kinematics problem for general serial manipulators is fundamental for computer
controlled robots� Given the pose of the end e�ector 	the position and orientation
� the
problem corresponds to computing the joint displacements for that pose� The most inter�
esting case has been that of serial manipulators with six joints� The complexity of inverse
kinematics of a general six jointed is a function of the geometry of the manipulator� While
the solution can be expressed in closed form for a variety of special cases� such as when three
consecutive axes intersect in a common point� no such formulation is known for the general
case� The main interest has been in a �R manipulator� which has six revolute joints� the
links are of arbitrary length and no constraints are imposed on the geometry of various links�
It is not clear whether the solutions for such a manipulator can be expressed in closed form�
Iterative solutions 	based on numerical techniques
 to the inverse kinematics for general �R
manipulators have been known for quite some time� However� they su�er from two draw�
backs� Firstly they are slow for practical applications and secondly they are unable to �nd
all the solutions� As a result� most industrial manipulators are designed su�ciently simply
so that a closed from exists�

In the absence of a closed form solution� �WM��� claim that the problem of inverse
kinematics for a general �R manipulator is considered solved when

� A tight upper bound on the number of solutions has been established�

� An e�cient� numerically sound method for computing all solutions has been developed�

At the same time� we feel it is important that the solution be able to provide a level of
performance expected of industrial manipulators�

All commercial robots with six revolute joints are designed with simple kinematic model
such that their inverse kinematics can be expressed as a closed form solution� In real world
applications the positioning accuracy of these manipulators depends on the kinematic model
used to describe the robot geometry in a parametric form� However� manufacturing errors
in machining and assembly of manipulators lead to discrepancies between the design param�
eters and physical structure� This mismatch is especially prevalent in manipulators with
revolute joints in which small manufacturing errors produce signi�cant errors between the
actual and predicted positions and orientations of the end e�ector� The typical approach
involves identi�cation of the individual kinematic parameters and incorporating them into
manipulator�s controller to improve positional accuracy� The former process of identi�ca�
tion is called the arm signature identi�cation �SSN��� WL���� Given the accurate kinematic
parameters� a number of methods have been proposed to calibrate and compensate for the
kinematic errors in robot manipulators �Hay��� VW���� However� a practical solution for
the inverse kinematics of general manipulators� especially �� will eliminate the need for any
algorithms for calibration and compensation of kinematic errors�

The inverse kinematics problem for six revolute joints has been studied for at least two
decades� The earliest systematic attempt on this problem appears to have been by Pieper
�Pie���� Pieper developed closed form solutions for the case where the three consecutive axes

�



are concurrent� For �R manipulators of general geometry� Pieper used a naive elimination
strategy� which indicated an upper bound of ��� 


� The �rst major accomplishment on the
general version problem was obtained by �RRS���� where an upper bound of �� was given to
the number of solutions� All these bounds on the number of solutions apply when the actual
number is �nite� The proof in �RRS��� is based on arguments from synthetic geometry and
is non�constructive� The �rst constructive solution to the problem was given by �AA���� In
particular� �AA��� expressed the solution in the form of �� � �� determinant� whose entries
were quartic polynomials in the tangent of the half�angle of one of the joint variables� �DC�
�
provided a �� degree polynomial in the tangent of the half�angle of one of the joint variables�

Tsai and Morgan used a higher dimensional approach to the inverse kinematics problem
�TM���� In particular� they cast the problem as eight second�degree equations and solved
them numerically using polynomial continuation� This is in contrast with the earlier ap�
proaches� where a single polynomial in the tangent of the half�space of one of the joint
variables was derived 	referred as the lower dimensional approach
� They tried di�erent
con�gurations and found only �� solutions 	sometimes complex
 for various �R manipula�
tors of di�erent geometries� As a result� they conjectured that this problem has at most
�� solutions� The �rst conclusive proof of the fact that the problem can have at most ��
solutions was given by �Pri���� In particular� �Pri��� showed that the remaining �� solutions
to the �� degree polynomial in �DC�
� have purely imaginary parts� Finally� �LL��a� LL��b�
gave the exact solution in lower dimensions by reducing the problem to a �� degree polyno�
mial� Moreover� �RR��� used dialytic elimination and properties of the ideal generated by
the multivariate equations to derive a �� degree polynomial in the tangent of the half�angle
of a joint variable� Complementing these results� �MD��� presented an example consisting of
a manipulator and a pose of the end e�ector such that the inverse kinematics problem has
�� real solutions and thereby� establishing the fact that �� is a tight bound on the number
of solutions�

As far as implementations of these algorithms are concerned� only continuation methods
have been able to solve the problem for a variety of cases �TM��� WM���� According to
�WM���� direct application of lower dimensional methods� like the one presented in �RR����
require hundreds of digits of precision for portions of the computation and therefore make
it impractical for implementation on current workstations� However� algorithms based on
continuation methods are rather slow� The best known algorithm takes about �
 seconds on
an average of CPU time on an IBM ��
 � �
�
 using double precision arithmetic �WM����
which falls short of what is expected of industrial manipulators� As a result no good practical
solutions are available for the inverse kinematics of a general �R manipulator�

In this paper we present an algorithm and implementation for real time inverse kinematics
for a general �R manipulator� We make use of the algebraic results presented in �RR����
However� we perform matrix operations and reduce the problem to computing eigenvalues
and eigenvectors of a matrix as opposed to computing a univariate polynomial in the tangent
of a half�angle of a joint variable� In particular� we obtain a ��� �� matrix� which therefore
has �� eigenvalues� � of these eigenvalues are �xed constants and the �� other eigenvalues
correspond to the tangent of the half�angle of a joint variable� Furthermore� the eigenvectors

�



corresponding to these �� eigenvalues are used to compute the rest of the joint variables�
The main advantage of this technique lies in its e�ciency and numerical stability� The
algorithms for computing eigenvalues and eigenvectors of a matrix are backward stable� and
fast implementations are available �GL��� ABB����� This is in contrast with expanding
a symbolic determinant to compute a degree �� polynomial and thereby� computing its
roots� The latter method is relatively slower and the problem of computing roots of such
polynomials can be ill�conditioned �Wil��� Wil���� The numerical stability of the operations
used in our algorithm is well understood� As a result� we are able to come up with tight
bounds on the accuracy of the solution� For almost all instances of the problem we are able
to compute accurate solutions using �� bit IEEE �oating point arithmetic �Gol���� Moreover�
the average running time of the algorithm is �� milliseconds on an IBM RS��


� In a few
cases we need to use sophisticated techniques like solving generalized eigenvalue system and
the resulting algorithm may take up to �� milliseconds on the IBM RS��


�

The rest of the paper is organized in the following manner� In Section ���� we review
the inverse kinematics problem and reduce the problem to solving a system of multivariate
polynomials� We also give a brief preview of the lower dimensional approach presented in
�RR���� In Section ���� we present results from linear algebra and numerical analysis� which
are being used in the algorithm� The algorithm has been presented in Section ��� and we
discuss its accuracy� implementation and performance in Section ���� In Section ��� we
extend the algorithm to six jointed manipulators consisting of revolute and prismatic joints�
We also highlight the applications of this approach to redundant manipulators�

� Inverse Kinematics

��� Problem Formulation

We use Denavit�Hartenberg formalism� �DH���� to model a �R manipulator� Each link is
represented by the line along its joint axis and the common normal to the next joint axis�
In the case of parallel joints� any of the common normals can be chosen� The links of the �R
manipulator are numbered from � to �� The base link is �� and the outermost link or hand
is �� A coordinate system is attached to each link for describing the relative arrangements
among the various links� The coordinate system attached to the ith link is numbered i� More
details of the model are given in �SV��� TM���� The � � � transformation matrix relating
i� � coordinate system to i coordinate system is �SV����

Ai �

�
BBB�

ci �si�i si�i aici
si ci�i �ci�i aisi

 �i �i di

 
 
 �

�
CCCA � 	�


�An eigendecomposition algorithm is backward stable if it computes the exact eigendecomposition of a
slightly perturbed matrix�

�



where
si � sin�i� ci � cos�i� �i is the ith joint rotation angle�

�i � sin�i� �i � cos�i� �i is the twist angle between the axes of joints i and i� ��

ai is the length of link i� ��

di is the o�set distance at joint i�

For a given robot with revolute joints we are given the ai�s� di�s� �i�s and �i�s� For the
inverse kinematics problem we are also given the pose of the end�e�ector� attached to link
�� This pose is described with respect to the base link or link �� We represent this pose as�

Ahand �

�
BBB�

lx mx nx qx
ly my ny qy
lz mz nz qz

 
 
 �

�
CCCA �

The problem of inverse kinematics corresponds to computing the joint angles� ��� ��� ���
��� �� and �� such that

A�A�A�A�A�A� � Ahand� 	�


The left hand side entries of the matrix equation given above are functions of the sines
and cosines of the joint angles� Furthermore� this matrix equation corresponds to �� scalar
equations� Since the matrix formed by the �rst � rows and � columns ofAhand is orthonormal�
only � of the �� equations are independent� Thus� the problem of inverse kinematics of general
�R manipulators corresponds to solving � equations for � unknowns�

��� Raghavan and Roth Solution

In this section� we brie�y describe the lower dimensional approach described by Raghavan
and Roth �RR���� They reduce the multivariate system to a degree �� polynomial in tan	 ��

�

�

such that the joint angle �� can be computed from its roots� The other joint angles are
computed from substitution and solving for some intermediate equations�

Raghavan and Roth rearrange the matrix equation� 	�
� as

A�A�A� � A��

� A��

� AhandA
��

� � 	�


As a result the entries of the left hand side matrix are functions of ��� �� and �� and the
entries of the right hand side matrix are functions of ��� �� and ��� This lowers their degrees
and reduces the symbolic complexity of the resulting expressions� The entries of columns �
and � of the right hand side matrix in 	�
 are independent of ��� As a result� comparing the
entries of the �rd and �th column results in � equations in � variables�

EQ� � c�f� � s�f� � c�h� � s�h� � a�

EQ� � s�f� � c�f� � ���	s�h� � c�h�
 � ��	h� � d�


�



EQ� � f� � ��	s�h� � c�h�
 � ��	h� � d�


EQ� � c�r� � s�r� � c�n� � s�n�

EQ� � s�r� � c�r� � ���	s�n� � c�n�
 � ��n�

EQ� � r� � ��	s�n� � c�n�
 � ��n�� 	�


where

f� � c�g� � s�g� � a�

f� � ���	s�g� � c�g�
 � ��g�

f� � ��	s�g� � c�g�
 � ��g� � d�

r� � c�m� � s�m�

r� � ���	s�m� � c�m�
 � ��m�

r� � ��	s�m� � c�m�
 � ��m�

g� � c�a� � a�

g� � �s���a� � ��d�

g� � s���a� � ��d� � d�

m� � s���

m� � c����� � ����

m� � �c����� � ����

h� � c�p � s�q � a�

h� � ���	s�p � c�q
 � ��	r � d�


h� � ��	s�p � c�q
 � ��	r � d�


n� � c�u� s�v

n� � ���	s�u� c�v
 � ��w

n� � ��	s�u� c�v
 � ��w

p � �lxa� � 	mx�� � nx��
d� � qx

q � �lya� � 	my�� � ny��
d� � qy

r � �lza� � 	mz�� � nz��
d� � qz

u � mx�� � nx��

v � my�� � ny��

w � mz�� � nz���

�



Let

h �

�
B�

h�
h�
h�

�
CA � f �

�
B�

f�
f�
f�

�
CA � n �

�
B�

n�
n�
n�

�
CA � r �

�
B�

r�
r�
r�

�
CA

and the equations� EQ��EQ� can be rearranged to obtain � equations� p�� p�� p�� l�� l�� l��

p �

�
B�

p�
p�
p�

�
CA �

�
B�

c� s� 

s� �c� 


 
 �

�
CAh �

�
B�

� 
 


 ��� ��

 �� ��

�
CA

�
B�

c� s� 

s� �c� 


 
 �

�
CA f �

�
B�

a�


d�

�
CA

l �

�
B�

l�
l�
l�

�
CA �

�
B�

c� s� 

s� �c� 


 
 �

�
CAn �

�
B�

� 
 


 ��� ��

 �� ��

�
CA

�
B�

c� s� 

s� �c� 


 
 �

�
CA r

It follows that the left hand side of pi and li is a linear combination of �� c�� s�� c�� s��
c�c�� c�s�� s�c�� s�s�� In a similar fashion the right hand side is a linear combination of �� c��
s�� c�� s�� c�c�� c�s�� s�c�� s�s�� However� the coe�cients used to express the right hand side
as a linear combination are functions of s� and c��

Consider p and l as � � � vectors� According to �RR���� the left and right hand sides of
the following equations have same power products as the left and right hand sides of pi and
li�

p � p� p � l� p� l� 	p � p
l� �	p � l
p� 	�


In all we get �� equations and they can be expressed as�

	Q


�
BBBBBBBBBBBBB�

s�s�
s�c�
c�s�
c�c�
s�
c�
s�
c�

�
CCCCCCCCCCCCCA

� 	P


�
BBBBBBBBBBBBBBB�

s�s�
s�c�
c�s�
c�c�
s�
c�
s�
c�
�

�
CCCCCCCCCCCCCCCA

� 	�


where Q is a �� � � matrix� whose entries are all constants� Furthermore� these entries are
obtained from the left hand sides of pi�s� li�s and the equations 	�
� P is a �� � � matrix�
whose entries are linear functions of s� and c� and they are obtained from the right hand sides
of pi�s� li�s and the equations� 	�
� The relationship expressed in 	�
 helps us in eliminating
four of the �ve variables�

Raghavan and Roth use � of the �� equations in 	�
 to eliminate the left hand side terms�
expressed as functions of �� and ��� in terms of the right hand side� expressed as functions

�



of ��� �� and ��� As a result� �RR��� obtain the relation�

	�


�
BBBBBBBBBBBBBBB�

s�s�
s�c�
c�s�
c�c�
s�
c�
s�
c�
�

�
CCCCCCCCCCCCCCCA

� 
� 	�


where �� is � � � matrix� whose entries are linear combinations of s�� c� and �� Given 	�
�
substitute

s� �
�x�

� � x��
� c� �

� � x��
� � x��

� s� �
�x�

� � x��
� c� �

�� x��
� � x��

� s� �
�x�

� � x��
� c� �

�� x��
� � x��

�

where x� � tan	 ��
�

� x� � tan	 ��

�

� x� � tan	 ��

�

� After the substitution� multiply each

equation by 	� � x�
�

� 	� � x�

�

 and 	� � x�

�

 to clear out the denominators and 	�
 can�

therefore� be expressed as�

	�
�




�
BBBBBBBBBBBBBBB�

x�
�
x�
�

x��x�
x��
x�x

�
�

x�x�
x�
x��
x�
�

�
CCCCCCCCCCCCCCCA

� 
� 	�


where 	�
�


 is �� � matrix� whose entries are quadratic polynomial in x�� The system given
above is not a square system and to convert it into a square system �RR��� use dialytic
elimination� In particular� the equation expressed in 	�
 are multiplied by x� to obtain a

�We may obtain more than � equations after elimination� However� we choose any � of them in this
matrix� More details are given in Section ����

�



square system of the form

�
�

�

�

� �
�

�

�
BBBBBBBBBBBBBBBBBBBBBBB�

x��x
�
�

x��x�
x��
x��x

�
�

x��x�
x��
x�x

�
�

x�x�
x�
x��
x�
�

�
CCCCCCCCCCCCCCCCCCCCCCCA

� ���

where � is a �� � null matrix� Let

�
��

�

�
�

�

�

� �
�

�

and �
��

is a �� � �� matrix whose entries are quadratic polynomials in x�� Therefore� its
determinant is a polynomial of degree �� in x�� Let us represent that polynomial as R�x���

Lemma ��� �� � x���
� divides R�x���

Proof� 	RR
�
�

As a result� the degree �� polynomial�

Q�x�� �
R�x��

�� � x����
� ����

is the input�output polynomial� whose roots are used to compute the joint angle ��� Ragha�
van and Roth expand the determinant and use a root solver for computing the values of ���
Given ��� they solve the �� linear independent equation in ��� to solve for �� and ��� Finally
they use the equations� ��� and ��� to solve for ��� �� and ���

��� Numerical Problems in Raghavan and Roth Solution

There are many computations in the solution highlighted above� which can have problems
due to �oating point arithmetic� For example� many properties of the ideal generated by
p�� p�� p�� l�� l�� l� may not hold due to �oating point computation� These properties are
being utilized while deriving the equations ���� Furthermore� computing the determinant
of �

��

can introduce signi�cant numerical errors such that �� � x���
� may not exactly divide






the determinant� Finally� the computation of real roots of polynomials of degree �� can
be ill conditioned 	Wil��� Wil��
� As a result� the �oating point errors accumulated in
the intermediate steps of the computation� and therefore in the coe�cients of the degree
�� polynomial� can have a signi�cant impact on the roots of the polynomial� Many such
examples are highlighted in 	Wil��� Wil��
� For example� consider the polynomial

P �x� � ��


k�
akx
k �

�
Y
k��

�x� k�����

A small perturbation of relative magnitude ���	 in a�	 can induce a displacement of order
unity in the larger roots of P �x��

It is for this reason that the algorithm presented in 	RR
�
 requires hundreds of digits of
precision for portions of computations 	WM��
� Most current workstations provide us with
a hardware implementation of double precision arithmetic� It is possible to simulate higher
order precision in software� However� that has a signi�cant impact on the speed and the
resulting algorithm becomes too slow for practical applications�

� Matrix Computations

Many of the matrix computations used in the algorithm for inverse kinematics have been
reviewed in the appendix� These include eigenvalues and eigenvectors of matrices� singular
value decomposition� condition numbers of matrices� eigenvalues and eigenvectors� cluster
of eigenvalues� We make use of these computations in the inverse kinematics algorithm
presented in the next section�

� Algorithm

In this section we describe our algorithm in detail� The initial steps in our algorithm make
use of the results presented in 	RR
�
� However� we perform symbolic preprocessing and
make certain checks for condition numbers and degeneracy to improve the accuracy of the
overall algorithm � The overall algorithm proceeds in the following manner�

�� Symbolic Computation� Treat the ai�s� di�s� 
i�s� �i�s and the entries of the right
hand side matrix Ahand as symbolic constants� As a result� express the entries of
the �� � � matrix P and �� � 
 matrix Q� as shown in equation ���� as functions
of these symbolic constants� It corresponds to symbolic elimination and is performed
using the properties highlighted in 	RR
�
� However� it is performed only once for
general �R manipulators� An equivalent symbolic elimination can be performed for a
serial manipulator with prismatic and revolute joints� The MAPLE program used in
symbolic preprocessing for �R manipulators is highlighted in the appendix at the end
of this paper�

�



�� Substitution of Manipulator parameters� Given a particular �R manipulator�
substitute the numerical values corresponding to the link lengths� o�set distances and
twist angles in the symbolic formulations derived above� The substitution results in
numerical matrices P and Q� as shown in ����

�� Numerical Conditioning� Compute the rank of Q using SVD� If Q has rank 

then this manipulator can have up to �� solutions for any pose of the end�e�ector�
However� the rank may be less than 
 and as a result we obtain an over�constrained
system� In this case the upper bound on the number of solutions may be less than ���
For example� a PUMA manipulator has a total of at most 
 solutions for any pose of
the end�e�ector 	SV
�
�

�� Numeric Elimination� Eliminate the variables �� and �� from ���� This elimination
is performed by computing a minor of maximum rank of Q and using that minor to
represent �� and �� as functions of �� and ���

�� Rank Computation� After eliminating �� and ��� we obtain a matrix �� as shown
in ���� The actual number of rows in � is equal to R � ���� rank�Q�� � �� Take any
of the � rows of � �among R� and substitute for sines and cosines of ��� �� and �� in
terms of x�� x� and x�� respectively� In case� there are more than � rows we recommend
taking � distinct linear combinations� As a result� we obtain a matrix of the form �

�

�
as shown in �
�� After using dialytic elimination we compute the �� � �� matrix� �

��

�
whose entries are quadratic polynomial in x��

�� Reduction to Eigenvalue Problem� Reduce the problem of computing roots
of� determinant��

��

� � �� to an eigenvalue problem� The eigenvalues of the resulting
����� matrix correspond to the root x� and the corresponding eigenvectors are used to
compute the values of x� and x�� Substitute these relations in ��� and ��� to compute
the joint angles ��� �� and ��� The algorithm also involves clustering eigenvalues to
accurately compute eigenvalues of multiplicity greater than one� Depending upon the
condition number of the matrices involved� the problemmay be reduced to a generalized
eigenvalue problem�

�� Improving the Accuracy� Compute the condition number of the eigenvalues�
In case� the condition number is high� improve the accuracy of resulting solution by
Newton�s method� The solutions computed above are the starting points for Newton�s
method and its quadratic convergence gives us high accuracy in a few steps�

These steps are explained in detail in the following sections�

��� Symbolic Preprocessing

Many properties of the ideal generated by the equations� EQ��EQ�� may not hold in practice
due to �oating point arithmetic� As a result we treat the known parameters of a �R manip�
ulator� the ai�s� di�s� 	i�s and the entries of Ahand �like lx� ly� qx� qy� as symbolic constants�

��



These symbolic constants along with the variables �i are used in the symbolic derivation
of the equations highlighted in ���� We use the computer algebra system� MAPLE� for the
derivation and simpli�cation of the expressions� A major simpli�cation is obtained by using
the identities

sin��	i� � cos��	i� � �� sin���i� � cos���i� � ��

The simplify command in MAPLE can perform this simpli�cation� The left and right hand
side of the 
 equations� shown in ���� are computed separately� Furthermore� we treat
p� q� r� u� v� w in the equations ��� as symbolic constants� As a result� we obtain expressions as
functions of these symbolic constants as opposed to lx� ly� lz�mx�my�mz� nx� ny� nz� qx� qy� qz�
After computing the �� equations� EQ��EQ� and 
 equations shown in ���� we collect the
terms as functions of sines and cosines of the joint angles �� and �� for the left hand sides of
the equations and of the joint angles ��� �� and �� for the right hand side of the equations�
All the constant terms from the left hand side of the equations are moved to the right hand
sides� The coe�cients of the equations are used to compute the entries of the matrices P
and Q� As a result� we are able to express the entries of P and Q as polynomial functions
of the symbolic constants ai�s� di�s� 
i�s� �i�s� p� q� r� u� v� w� In case of P� each entry is of the
form 
sin���� � �cos���� � �� where 
� � and � are functions of the symbolic constants�

The matrix Q has a special structure� In particular many of its entries are zero and as
a result the system of equations� ���� can be expressed as two di�erent system of equations
of the form�

�Q��

�
s�
c�

�
� �P��

�
BBBBBBBBBBBBB�

s�s�
s�c�
c�s�
c�c�
s�
c�
s�
c�

�
CCCCCCCCCCCCCA
� ����

�Q��

�
BBBBBBBB�

s�s�
s�c�
c�s�
c�c�
s�
c�

�
CCCCCCCCA

� �P��

�
BBBBBBBBBBBBBBB�

s�s�
s�c�
c�s�
c�c�
s�
c�
s�
c�
�

�
CCCCCCCCCCCCCCCA

� ����

where Q��Q��P��P� are �� �� 
 � �� � � �� 
 � � matrices� respectively� The details of this
formulation are given in 	RR
�
� In particular� we break the set of the �� equations into sets
of � and 
 equations� Q�� Q� are minors of Q and P�� P� are minors of P�

��



The symbolic complexity of the entries of P��P��Q��Q� corresponding to the equations
p�p� �p �p�l� ��p � l�p is high� Simplifying these entries by collecting terms with common
subexpressions increases the e�ciency and numerical accuracy of subsequent computations�

��� Numerical Substitution and Rank Computation

Given the Denavit�Hartenberg parameters of a manipulator� we substitute the ai�s� di�s� 
i�s
and �i�s into the functions used to represent the entries of P��P��Q��Q�� These entries are
functions of p� q� r� u� v� w� While substituting the numerical entries� accuracy problems can
arise due to catastrophic cancellation 	GL
�
� This happens when the number of signi�cant
digits ��� in the case of double precision arithmetic� is not enough for the accuracy of the
result� We have tried many examples and never noticed this problem in our set of examples�
However� the numerical accuracy can be improved by using higher precision arithmetic�
implemented in software� These computations are only performed once for a manipulator
and are independent of the pose of the end�e�ector� As a result� they are categorized
under pre�processing computation� Given the pose of the end�e�ector� we compute the
values of p� q� r� u� v� w and substitute them to compute the entries of P��P��Q��Q�� Let the
corresponding numerical matrices �obtained after substitution� be P��P��Q��Q��

We use SVD to compute the ranks of Q� and Q�� The singular vectors obtained are
also used to eliminate �� and �� from ���� and ����� In particular� let the singular value
decomposition of Q� be expressed as�

Q� � U
�

�
�

V
�T

�

where U
�

��
�

and V
�T

are �� �� �� � and �� � matrices� respectively� Initially we compute
the singular values� ��� �� of Q�� If both the singular values are non�zero� Q� has full rank

and let Q�

�

� Q�� If either of the singular values� �i is close to ��� we conclude that Q� does
not have full rank� In this case we represent

�
�

i �

�
�i �i � �
� �i � �

where � is a user de�ned constant to test the rank de�ciency of the matrix� Furthermore we
compute the elements of U�V and represent

Q
�

�ij
� ��

k���
�

kUikVjk�

Q
�

� has the property that a small perturbation does not decrease the rank of the matrix�
It turns out that this property has signi�cant impact on the accuracy of the rest of the

��



algorithm� We use Q
�

� for eliminating ��� �� in the system of equations ���� to obtain

�Q
�

��

�
s�
c�

�
� �P��

�
BBBBBBBBBBBBB�

s�s�
s�c�
c�s�
c�c�
s�
c�
s�
c�

�
CCCCCCCCCCCCCA
� ����

We perform Gaussian elimination with complete pivoting on Q
�

� and corresponding row and

column operations are carried on the elements of P� Depending on the rank of Q
�

�� whether
�� � or �� we obtain �� � or � equations� respectively� in sines and cosines of ��� ��� Each
equation corresponds to a row of � in ����

In a similar fashion we compute the rank of Q�� as represented in ����� In case either

of the singular values is close to ���� we recompute the matrix Q
�

� from the singular value

decomposition of Q�� Otherwise Q
�

� � Q�� The modi�ed matrix is used in eliminating ��� ��

from ����� Depending on the rank of Q
�

�� we may obtain anywhere from � to 
 equations
after elimination� Each equation corresponds to a row of � in ����

The matrix � is a p� � matrix� where � � p � ��� Furthermore each entry is a function
of sin���� and cos����� We choose any � of the p rows and break up the resulting matrix into
�� and �� consisting of � and p � � rows� respectively� The algorithm �nds the solutions
of the equations corresponding to P�� and back substitutes the solution into equations
corresponding to ��� As a result� we solve for the system of equations represented by ��

Given the �� � matrix ��� substitute the sines and cosines of ��� ��� �� in terms of x�� x�
and x�� perform dialytic elimination and obtain a �� � �� matrix� �

��

� whose entries are
quadratic polynomials in x��

��� Reduction to Eigenvalue Problem

In this section� we reduce the problem of root �nding to an eigenvalue problem� Moreover�
we exploit the structure of the resulting matrix for e�ciently computing its eigenvalues�

Given the �� � �� matrix� �
��

� and each of its entries is a quadratic polynomial in x��

��



Our problem is to solve the system of linear equations

�
��

v � �
��

�
BBBBBBBBBBBBBBBBBBBBBBB�

x��x
�
�

x��x�
x��
x��x

�
�

x��x�
x��
x�x

�
�

x�x�
x�
x��
x�
�

�
CCCCCCCCCCCCCCCCCCCCCCCA

�

�
BBBBBBBBBBBBBBBBBBBBBBB�

�
�
�
�
�
�
�
�
�
�
�
�

�
CCCCCCCCCCCCCCCCCCCCCCCA

� ����

We express the matrix as
�

��

� Ax�
� �Bx� �C� ����

where A�B and C are �� � �� matrices consisting of numerical entries� We compute the
condition number of A� The actual computation of a condition takes O�n�� time� However�
good estimators of complexity O�n�� are available and are available in LINPACK and LA�
PACK 	ABB���
� If the matrix is singular� its condition number is in�nity� Let us consider
the case� when the matrix A is well conditioned� We take the matrix equation� ����� and
multiply it by A��� Let

�
��

� Ix�� �A��Bx� �A��C�

where I is a �� � �� identity matrix� In practice A��B and A��C are computed by linear

equation solvers� Given �
��

� we use Theorem ��� 	GLR
�
 to construct a �� � �� matrix M
of the form

M �

�
� I

�A��C �A��B

�
�

where �� I are ��� �� null and identity matrices� respectively� It follows from the structure
of M that the eigenvalues of M correspond exactly to the roots of determinant��

��

� � ��
Furthermore� the eigenvectors of M� corresponding to the eigenvalue x� have the structure

V �

�
v

x�v

�
� ����

where v is the vector corresponding to the variables in ����� Thus� the eigenvectors of M
can be used to compute the roots of the equations in �����

Lets consider the case� when the matrix A in ���� is ill�conditioned� One example of
such a case occurs� when one of the solution of inverse kinematics has �� � �
�� As a result�
x� � tan� ��

�
� ��� Therefore� A is nearly singular� We take the matrix equation� ����� and

��



reduce it to a generalized eigenvalue problem by constructing two matrices�M� and M�

M� �

�
I �

� A

�
�M� �

�
� I

�C �B
�
�

where �� I are �� � �� null and identity matrices� respectively� Furthermore� the roots of
determinant��

��

� � �� correspond exactly to the eigenvalues of the generalized eigenvalue
problem M� � x�M� 	GLR
�
� The eigenvectors have the same structure as �����

Computing the eigendecomposition of a generalized eigenvalue problem is costlier than
the eigenvalue problem by a factor of ��� to �� In most cases� we can perform a linear
transformation and reduce the problem to an eigenvalue problem� In particular� we perform
a transformation of the form

x� �
ax� � b

cx� � d
� ����

where a� b� c� d are random numbers� As a result of this transformation� ���� transforms into

�
��

� � �a� A�ac B�c� C�x�����ab A��ad�bc� B��cd C�x���b� A�bd B�d� C�� ��
�

Let A � a� A�ac B� c� C� In most cases A is well conditioned� The only exceptions arise
when �

I �

� A

�
� 


�
� I

�C �B
�

is a singular pencil� Such cases are possible� if the manipulator has less than �� solutions�
A�B�C may have common singular pencils� In the latter case� A is ill conditioned for

all choices of a� b� c� d�
We try this transformations for a few choices of a� b� c� d and compute the condition num�

ber of A� The cost of estimating condition number is rather small as compared to computing
the eigendecomposition of the matrix� IfA is well conditioned� solve for determinant��

��

�
� � �

by reducing it to an eigenvalue problem� Given x�� apply the inverse transformation to com�
pute x�� The eigenvectors have the same structure as ����� except that x� is replaced by
x��

� Implementation

We have implemented the algorithm on an IBM RS������ We have used many routines from
EISPACK and LAPACK for matrix operations� These routines are available in Fortran and
we interfaced them with our C programs� Many of the algorithms for matrix computations
have been specialized to our application� The details are given below�

��� Eigendecomposition

In the previous section we reduced the problem of root �nding to an eigenvalue problem�
The �� � �� matrix� M � has �� eigenvalues� However� according to Lemma ���� 
 of the

��



eigenvalues correspond to the roots of the polynomial �� � x���
� � �� In other words� � and

�� are eigenvalues of M of multiplicity � each� where � �
p��� If we transform the variable

x�� as shown in ����� these eigenvalues are suitably modi�ed�
We use the structure ofM in the eigenvalue algorithm� In the double shift QR algorithm

we chose the shift value for the �rst few iterations to correspond to � and ��� For example�
in the single shift algorithm highlighted in �����

H� sI � UR�

the upper triangular matrix R is singular if s corresponds to an eigenvalue of a matrix�
In other words at most four iterations of the double shift algorithm reduce the problem
to computing the eigenvalues of �� � �� matrix� The �� eigenvalues of the latter matrix
correspond exactly to the �� solutions of Q�x�� in �����

The rest of the algorithm consists of performing orthogonal symmetric transformations
such that the matrix reduces to its real Schur form� These transformations correspond to
choosing shifts and computing the QR decomposition of the resulting matrix�

Given the real Schur form� ����� we are only interested in computing the eigenvectors
corresponding to real eigenvalues� These eigenvalues can be easily identi�ed by ��� diagonal
matrices Rii in ����� To account for numerical errors� we test whether the imaginary part of
the eigenvalue is less than �� For such eigenvalues� we set the imaginary part equal to zero
and it becomes a real eigenvalue of multiplicity two� In other words� the � � � matrix� Rjj

corresponding to the complex eigenvalues is converted into an upper triangular matrix�

��� Clustering Eigenvalues

In many instances the solution has a root of multiplicity greater than one� As such the
problem of computing multiple roots can be ill�conditioned� In other words the condition
numbers for such eigenvalues can be high and the solution therefore� is not accurate� In
most instances of the problem� we have noticed that there is a symmetric perturbation in
the multiple roots� For example� let x� � 	 be a root of multiplicity k of the given equation�
The �oating point errors cause the roots to be perturbed and the algorithm computes k
di�erent roots 	�� � � � � 	k� Moreover� j 	�	j j may be relatively high� Let 	m � �����������k

k
�

In many cases it turns out that j 	 � 	m j is relatively small and 	m is very close to the
multiple roots� We can actually verify the accuracy of these computations by computing the
condition number of the eigenvalue and the condition number of a cluster of eigenvalues� The
eigendecomposition routines in LAPACK have implementation of these condition numbers
	BDM
�
�

��� Eigenvector computation

The eigenvector corresponding to a real eigenvalue is computed by solving a quasi�upper
triangular system 	GL
�
� Given an eigenvector V� we use its structure� ����� to accurately
compute x� and x� from it� However� due to �oating point errors each component of the

��



eigenvector undergoes a slight perturbation� Each term of the vector has the same bound on
the maximum error occurred due to perturbation 	Wil��
� As a result� terms of maximum
magnitude generally have the minimum amount of relative error� We use this property in
accurate computation of x� and x�� Given the eigenvector V� let

v� �

�
v j x� j� �
x�v j x� j� �

Thus� v� corresponds to elements of V� whose relative error is low� x� and x� can be
computed from v� by solving for

v� �

�
BBBBBBBBBBBBBBBBBBBBBBB�

v�
v�
v�
v�
v�
v�
v�
v�
v	
v�

v��
v��

�
CCCCCCCCCCCCCCCCCCCCCCCA

�

�
BBBBBBBBBBBBBBBBBBBBBBB�

x��x
�
�

x��x�
x��
x��x

�
�

x��x�
x��
x�x

�
�

x�x�
x�
x��
x�
�

�
CCCCCCCCCCCCCCCCCCCCCCCA

� ����

Therefore� x� and x� corresponds to ratio of two terms of v�� Initially� we decide whether
j x� j� � or j x� j� � by comparing the magnitude of v� and v�� A similar computation is
performed for determining the magnitude of x�� Depending upon their magnitudes� we tend
to use terms of maximum magnitude such that their ratios correspond to x� and x�� As a
result we minimize the error�

��� Computing all Joint Angles

Given a triple �x�� x�� x�� corresponding to a solution of the � equations represented as the
��� matrix��� We substitute these solutions into the equation corresponding to the matrix
��� The triple is classi�ed as a solution of the original system if it satis�es all the equations
obtained after eliminating �� and ��� These equations are represented by the matrix ��

Given a solution of �� solve for s�� c�� s�� c� from Q
�

� and Q
�

�� as shown in ����� These
solutions are substituted into ��� to compute ���

��� Improving the Accuracy

The solution obtained above are back substituted into the equations EQ��EQ�� ���� The
residues obtained are used to check the accuracy of the given solutions� To improve the

��



accuracy we use Newton�s method� If the given solution has multiplicity one� the residual
quickly converges to zero in a few iterations�

We apply the Newton�s method on the equations� We represent each equation in terms of
xi� where xi � tan� �i

�
�� As a result each equation is quadratic polynomial in xi� The solution

computed from the eigenvalue algorithm highlighted above is used as the initial guess for
the Newton�s method� At each step of the iteration� we evaluate the functions and compute
the jacobian� The improved solution is computed by solving a linear system of equations�
This process is repeated till the residual is below a certain threshold� ��

The jacobian is almost singular for solutions close to higher multiplicity roots� Modi�ed
versions of Newton�s method to handle such cases are highlighted in 	DK
�� Kel
�
�

��� Performance

We have applied our algorithm to many examples� In particular� we used it on �� problem
instances given in 	WM��
 and veri�ed the accuracy of our algorithm� All these problems
can be accurately solved using double precision arithmetic� In many cases we are able to
compute solutions up to ��� �� digits of accuracy�

For most problems� the algorithm takes about �� milliseconds on an average on an IBM
RS������ The actual time varies between ��� milliseconds to �� milliseconds� About ���
��
of the time is spent in theQR algorithms for computing the eigendecomposition� Thus� better
algorithms and implementations for eigendecomposition can improve the running time even
further�

In a few cases the algorithm takes as much as �� milliseconds on the IBM RS������ In
these instances the matrices A�B�C in ���� are ill�conditioned and have singular pencils� As
a result we reduce the resulting problem to a generalized eigenvalue problem� which slows
down the algorithm�

Example ��� Let us consider the manipulator presented in �WM��� along with a pose of
the end e�ector� This is problem � in �WM��� and corresponds to a slight variation of the
manipulator presented in �MD	��� For this con
guration the problem of inverse kinematics
has �� real solutions� The robot parameters are given in Table ����

The position and orientation of the end e�ector and is given by the matrix

Ahand �

�
BBB�
��������� �������
� �������� ���������
�������� ��� �������� ���
��������� �������� ����
���
 ���

� � � �

�
CCCA �

�




Number Link Length O�set Distance Twist Angle
i ai di �i

� 
�� 
�
 �
�

� ��
 
�
 ��

� 
�
 
�� �
�

� ��� 
�
 ��

� 
�
 
�
 �
�

� 
�
 
�
 ��


Table �
 The Denavit Hartenberg Parameters of a 
R manipulator

After substitution into the symbolic matrices� we obtain

Q� �

�
BBBBBBBB�

��������� ����
���	����� ���		�	��
���� ��
�����

����	���
 ���������
��� ������	�	

�������
�� ���������

�
CCCCCCCCA
�

Q� �

�
BBBBBBBBBBBB�

��� ��� ��� ������� ���� ���
�

��� ��� ������� ���� ���
� ���

��� ������ ��� ����� ������ ���

����� ��� ����� ��� ��� �������

������
 ������� ������ ���� ����� ���

������� �����
 ���� ������� ��� �������

��� ����� ������ ������		 ���
�	 ������


������ ��� ������	 ������� ������� ����
�	

�
CCCCCCCCCCCCA

�

The entries of P� and P� are functions of s� and c�� P� is an 
 � 	 matrix�

P� �

�
BBBBBBB�

��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� �
��e�� ���

��� ��� ��� ��� ��� 
�� ��� ��� ���

��� ������ ��� ��� ��� ��� ��� ��� ���

��� ����
� ����
� ��� ��� ��� ��� �����
� ���

��� ���
�� ���
�� ��� ��� ��� ��� ������ ���

�
CCCCCCCA

c



�
BBBBBBB�

��� ��� ��� ��� ��� ����� ��� ��� ���

��� ������ ������ ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� �����	� ���

��� ������ ������ ��� ��� ��� ��� �����e�	 ���

��� ������ ������� ��� ��� ��� ��� ������ ���

�
CCCCCCCA

s



�	



�
BBBBBBB�

��� ��� ��� ��� ����� ��� ��� ��� �����

����� ��� ��� ������ ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ������� ��� ��� ��	 ��� ����
�

������ ��� ��� �����
� ��� ��� ��� ��� �������

������ ��� ��� �
���� ��� ��� ���	�� ��� ������

�
CCCCCCCA

�

Similarly P� is a � � 	 matrix

P� �

�
BBBBBBBBBBBB�

��� ��� ��� ��� ��� ��	 ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ���

��� ������ ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ������� ���

��� ������ ��� ��� ��� ��� ��� 
�����e�
 ���

��� ������ ������ ��� ��� ��� ��� ������� ���

��� ����� �
��� ��� ��� ��� ��� ��	��� ���

��� �������	 ������e�
 ��� ��� ��� ��� ������� ���

�
CCCCCCCCCCCCA

c



�
BBBBBBBBBBBB�

��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ������ ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ������� ���

��� ������� �� ������ ��� ��� ��� ��� ��� ���

��� ������ ��� ��� ��� ��� ��� ������ ���

��� �����
� ������� ��� ��� ��� ��� �
����e�
 ���

��� �������� ��� ��� ��� ��� ��� ������	 ���

��� 
���� ����� ��� ��� ��� ��� ���	��� ���

�
CCCCCCCCCCCCA

s



�
BBBBBBBBBBBB�

��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ������ ��� ��� ��� 
���e�


��� ��� ��� ��� ��� ��� ��� ��� ���

������ ��� ��� �������	 ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ���

������� ��� ��� ������� ��� ��� ��� �
����e�
 ���

����� ��� ��� ��
��� ��� ��� �
�� ��� ���

������	 ��� ��� ������
 ��� ��� ������	 ��� ���

�
CCCCCCCCCCCCA

�

The matrices Q� and Q� have no singular values close to zero� In other words they are
full rank matrices� As a result after numerical elimination we obtain a 
� 	 matrix � given
as�

� �

�
BBBBBBBBBB�

��� ��� ��� ��� ��� 
�� ��� �����e�� ���

��� ��� ��� ��� ��� 
�� ��� ������e�� ���

��� ������e�� ��� ��� ��� ��� ��� ���
�	e�� ���

��� �
����e�
 �
�����e�
 ��� ��� ��� ��� ���
	�e�� ���

��� ���
��� ���
��� ��� ��� ��� ��� ������ ���

��� �����e�� ����� ��� ��� ���
��� ��� ��	��� ���

��� ������e�� ������e�
 ��� ��� �����
e�� ��� �������e�� ���

�
CCCCCCCCCCA

c



��



Num� Eigenvalue Condition Num�

� ������� �������
� �������� �����
�
� ����
��� ����
��
� ��
���� �������
� ������
� �
��
��
� ������� ���
���
� �������� ��
����
� ������� �������
� �
������� �������
�
 
������� ��
����
�� �
������� ���
���
�� 
������� �
��
��
�� 
�
������ ����
��
�� �
�


����� �������
�� 
�

�
���� �����
�
�� 
�
������ �������

Table �
 Eigenvalues and their condition numbers

�
BBBBBBBBBB�

��� �����e�� �����e�� ��� ��� ����
e�
 ��� ��� ���

��� �����e�� �����e�� ��� ��� ����
�e�
 ��� ��� ���

��� ������e�� ������e�� ��� ��� �����
e�
 ��� �����	e�� ���

��� ������� �������� ��� ��� ��
��e�� ��� ������e�	 ���

��� ��		�e�� ���	
�e�� ��� ��� �	��
	e�
 ��� �����e�� ���

��� ������e�� ��� ��� ��� ������e�� ��� ���
��e�
 ���

��� ������� ����� ��� ��� ��
��
 ��� ���	��� ���

�
CCCCCCCCCCA

s



�
BBBBBBB�

������ ��� ��� ������� ������� ��� ��� ��� �����

������e� � ��� ��� ������� ���
��
 ��� ��	 ��� 	���
e��

���
�� ��� ��� ����	�� ��
�
e�� ��� ��� ��� ������e��

������ ��� ��� ������	 ���
��
 ��� ���	��� ��� ���
�


���� ��� ��� ��
��� ��		
e�
 ��� �
�� ��� �������

���
�
e�� ��� ��� ������e�� �	��
	e�
 ��� ������e�� ��� ������e��

�
CCCCCCCA

�

� is converted into a matrix polynomial using the transformation x� � tan� ��
�
� and

obtaining the �� � �� matrix �
��

� expressed as a matrix polynomial in x�� The estimated
condition number of the leading matrix is ������� As a result� we reduce it to an eigenvalue
problem of a ��� �� square matrix� The eigenvalues are computed using LAPACK routines�
The real eigenvalues and their condition numbers are

Thus� we see that all the �
 eigenvalues are real� Furthermore� they are computed up to

��



i �� �� �� �� �� ��

� �������	
� �����
	�� ��������	� 
����	��� 	��		���� �
��������

� ��������
�
 ����

�
�� ���������
� 
��

���� �������	��� ���������



 ��������	 ����������� ���������	� ��
������
 �	�������� �����
����

� ��
���
��� 	�
��
�� ����������� �		������
 ���������� ��
�
��
��

	 ����������� ���������� ������

�
� �	���
��
 ��������	�� ����	���



� ����
����� ���
������� ������
��� ���������� ����������� ���������

� ��������
� ���	����
�� �������	
�	 
���
��� �������
 ���������


� ��	����� ������	��
 ������
��� ����	����� ����	��	 ���������

� ��	����� ������	��
 �����	��	� ����������� ���������	 �������	��

�� ��������
� ���	����
�� �	������	 �������		� ����	�
��� ����	�����

�� ����
����� ���
������� �

�
����� ������	���� ��������� �����
����

�� ����������� ���������� 
�������� �����
���
� ��	�
�	�

 ������
��

�
 ��������	 ����������� 
������� ������	���� �����
��� �
��	�

	�

�� �������	
� �����
	�� ����
���� ����	����� ��������	� ����	�	���

�	 ��������
�
 ����

�
�� �������� ���������� �

������� �
��������

�� ��
���
��� 	�
��
�� ���		��� �������	�
� �������	�
� �
��������

Table �
 The joint angles corresponding to the solutions

�� digits of accuracy� This follows from the fact that the machine constant for IEEE �oating
point arithmetic is of the order of ����� and the maximum condition number is of the order of
��� As a result� the eigenvalues have a relative error bounded by ������ Given the eigenvalues�
the rest of the algorithm involves computation of rest of the corresponding eigenvectors and
joint angles� Let	s illustrate the process for the �rst eigenvalue� x� � �
�	�		� As a result�

s� � ����������� c� � ���						�

Since j x� j� �� we make v� equal to the last �� elements of V the eigenvector� as shown
in 
���� Analyzing the elements of v� results in j x� j� � and j x� j� �� Elements of
maximum magnitude of v� are used to compute x� and x� to the best possible accuracy� It
results in x� � ����	�� and x� � ���	�
�� These are used to compute s�� s�� c�� c� by solving
a system of linear equations� Finally� these values are plugged into the original equations�
EQ���EQ
 to compute s
 and c
�

Given the sines and cosines of the joint angles� si and ci� their accuracy is improved by
using a few iterations of the Newton	s method and computing the residuals on EQ���EQ
�
As a result� it is possible to obtain solutions to �� digits of accuracy on this example� The
�
 solutions for this position and orientation of the end�e�ector are given in Table ����

More examples highlighting con�gurations with higher multiplicity solutions are high�
lighted in �MC	���

��



� General Serial Manipulators

The techniques presented above can be extended to any serial manipulators with a �nite
number of solutions� The joints may be prismatic or revolute� In particular� Raghavan and
Roth have shown that for many cases of manipulators with six joints �revolute or prismatic�
the problem of inverse kinematics reduces to �nding roots of a univariate polynomial �RR	���
Our algorithm can be extended to all such manipulators� For each class of manipulator� dif�
ferent symbolic computations are performed by taking into account di�erent joint variables�
The rest of the numerical steps are similar�

The real time algorithm has also been used for computer animation and physical based
modeling� More details are given in �MC	���

� Conclusion

In this paper we presented a real time algorithm for inverse kinematics of a 
R manipulator
of general geometry� The algorithms performs symbolic preprocessing� matrix computations
and reduces the problem to computing the eigendecomposition of a matrix� The numerical
accuracy of the operations used in the algorithm is well understood� For most instances
of the problem the solution can be accurately computed using double precision arithmetic�
The algorithm has been tested on a variety of instances and the average running time is
�� milliseconds on an IBM RS�
���� We believe that this algorithm gives us a level of
performance expected of industrial manipulators� This approach can be directly extended
to all serial manipulators with a �nite number of solutions�

References

�AA�	� H� Albala and J� Angeles� Numerical solution to the input output displacement
equation of the general �r spatial mechanism� In Proceedings of the Fifth World
Congress on Theory of Machines and Mechanisms� pages ���������� �	�	�

�ABB�	�� E� Anderson� Z� Bai� C� Bischof� J� Demmel� J� Dongarra� J� Du Croz� A� Green�
baum� S� Hammarling� and D� Sorensen� LAPACK User	s Guide� Release ��
�
SIAM� PHILADELPHIA� �		��

�BDM�	� Z� Bai� J� Demmel� and A� McKenney� On the conditioning of the nonsymmetric
eigenproblem
 Theory and software� Computer Science Dept� Technical Report
�
	� Courant Institute� New York� NY� October �	�	� �LAPACK Working Note
�����

�DC��� J� Du�y and C� Crane� A displacement analysis of the general spatial �r mech�
anism� Mechanisms and Machine Theory� ��
�����
	� �	���

��



�Dem�	� J� Demmel� LAPACK
 A portable linear algebra library for supercomputers� In
Proceedings of the ���� IEEE Control Systems Society Workshop on Computer�
Aided Control System Design� Tampa� FL� Dec �	�	� IEEE�

�DH��� J� Denavit and R�S� Hartenberg� A kinematic notation for lower�pair mechanisms
based upon matrices� Journal of Applied Mechanics� ��
�������� �	���

�DK��� D� W� Decker and C� T� Kelley� Newton�s method at singular points I� SIAM J�
Num� Anal�� ��


���� �	���

�GBDM��� B�S� Garbow� J�M� Boyle� J� Dongarra� and C�B� Moler� Matrix Eigensystem
Routines � EISPACK Guide Extension� volume �� of Lecture Notes in Computer
Science� Springer�Verlag� Berlin� �	���

�GL�	� G�H� Golub and C�F� Van Loan� Matrix Computations� John Hopkins Press�
Baltimore� �	�	�

�GLR��� I� Gohberg� P� Lancaster� and L� Rodman� Matrix Polynomials� Academic Press�
New York� �	���

�Gol	�� D� Goldberg� What every computer scientist should know about �oating point
arithmetic� ACM Computing Surveys� ������ �		��

�Hay��� S�A� Hayati� Robot arm geometric link calibration� In IEEE Control and Deci�
sion Conference� pages ���������� �	���

�Kel�
� C� T� Kelley� A Shamanskii�like acceleration scheme for nonlinear equations at
singular roots� Math� Comp�� ��

�	�
��� �	�
�

�LL��a� H�Y� Lee and C�G� Liang� Displacement analysis of the general spatial ��link �r
mechanism� Mechanisms and Machine Theory� �����
��	���
� �	���

�LL��b� H�Y� Lee and C�G� Liang� A new vector theory for the analysis of spatial mech�
anisms� Mechanisms and Machine Theory� �����
��	����� �	���

�MC	�� D� Manocha and J�F� Canny� Real time inverse kinematics of general 
r manipu�
lators� Technical Report ESRC 	���� RAMP 	���� Engineering System Research
Center� University of California� Berkeley� �		��

�MD�	� R� Manseur and K�L� Doty� A robot manipulator with �
 real inverse kinematic
solution set� International Journal of Robotics Research� ����
����	� �	�	�

�Pie
�� D� Pieper� The kinematics of manipulators under computer control� PhD thesis�
Stanford University� �	
��

�Pri�
� E�J�F� Primrose� On the input�output equation of the general �r�mechanism�
Mechanisms and Machine Theory� ��
��	����� �	�
�

��



�RR�	� M� Raghavan and B� Roth� Kinematic analysis of the 
r manipulator of general
geometry� In International Symposium on Robotics Research� pages ��������
Tokyo� �	�	�

�RR	�� M� Raghavan and B� Roth� Inverse kinematics of the general 
r manipulator and
related linkages� Transactions of ASME� Journal of Mechanical Design� �		��
To appear�

�RRS��� B� Roth� J� Rastegar� and V� Scheinman� On the design of computer controlled
manipulators� In On the Theory and Practice of Robots and Manipulators� pages
	������ First CISM IFToMM Symposium� �	���

�SSN�
� H�W� Stone� A�C� Sanderson� and C�P� Neuman� Arm signature identi�cation�
In IEEE Conference on Robotics and Automation� pages ������ �	�
�

�SV�	� M�W� Spong and M� Vidyasagar� Robot Dynamics and Control� John Wiley and
Sons� �	�	�

�TM��� L�W� Tsai and A�P� Morgan� Solving the kinematics of the most general six and
�ve�degree�of�freedom manipulators by continuation methods� Transactions of
the ASME� Journal of Mechanisms� Transmissions and Automation in Design�
���
��	����� �	���

�VW��� W�K� Veitschegger and C� Wu� A method for calibrating and compensating
robot kinematic errors� In IEEE Conference on Robotics and Automation� pages
�	���� �	���

�Wil�	� J�H� Wilkinson� The evaluation of the zeros of ill�conditioned polynomials� parts
i and ii� Numer� Math�� �
�����

 and �
������ �	�	�

�Wil
�� J�H� Wilkinson� Rounding Errors in Algebraic Processes� Prentice�Hall� Engle�
wood Cli�s� New Jersey� �	
��

�Wil
�� J�H� Wilkinson� The algebraic eigenvalue problem� Oxford University Press�
Oxford� �	
��

�WL��� D�E� Whitney and C�A� Lozinski� Industrial robot calibration methods and re�
sults� In Proceedings of the International Computers in Engineering Conference�
pages 	������ �	���

�WM	�� C� Wampler and A�P� Morgan� Solving the 
r inverse position problem using a
generic�case solution methodology� Mechanisms and Machine Theory� �
���
	��
��
� �		��

��



� Appendix

In this section we review the matrix computations used in our kinematics algorithm and
also present a sample of the MAPLE program used in symbolic preprocessing for the 
R
manipulator algorithm�

��� Matrix Computations

In this section we present techniques from linear algebra and numerical analysis� We also
highlight the numerical accuracy of the problems and the algorithm used to solve those
problems in terms of their condition numbers�

��� Hessenberg Matrix

A Hessenberg matrix is of the form

H �

�
BBBBBBBBB�

h�� h�� h�� � � � h�n
h�� h�� h�� � � � h�n
� h�� h�� � � � h�n
� � h�� � � � h�n
���

���
��� � � �

���
� � � � � hn�n�� hnn

�
CCCCCCCCCA

�

In other words it is like an upper triangular matrix� except all that the subdiagonal elements
may be non�zero� Given a matrix A� it can be converted into a Hessenberg matrix using
similarity transformations of the form QAQ��� where Q is an orthogonal matrix� Q is an
orthogonal matrix if QQT � I�

��� QR Factorization

The QR factorization of an m� n matrix A is given by

A � QR�

where Q is an m�m orthogonal matrix and R is an m� n upper triangular matrix� More
details on its computations are given in �GL�	��

��� Singular Value Decomposition

The singular value decomposition �SVD� is a powerful tool which gives us accurate infor�
mation about matrix rank in the absence of round o� errors� The rank of a matrix can also
be computed by Gauss elimination� However� there arise many situations where near rank
de�ciency prevails� Rounding errors and fuzzy data make rank determination a non�trivial
exercise� In these situations� the numerical rank is easily characterized in terms of the SVD�

�




Given A� a m� n real matrix then there exist orthogonal matrices U and V such that

A � U�VT

where U is a m � n orthogonal matrix� V is n � n orthogonal matrix and � is a n � n

diagonal matrix of the form
� � diag���� ��� � � � � �n��

Moreover� �� � �� � � � � � �n � �� The �i�s are called the singular values and columns of U
and V� denoted as ui�s and vj�s� are known as the left and right singular vectors� respectively
�GL�	�� The relationship between the elements of A� singular values and singular vectors
can be expressed as


Aij � �n
k���kUikVjk�

where Aij�Uij �Vij represent the element in the ith row and jth column of A�U and V�
respectively�

The singular values give accurate information about the rank of the matrix� The matrix
A has rank k � n� if �k�� � �� �k�� � �� � � � � �n � �� Furthermore� the smallest positive
singular value gives us information about the closeness to a rank de�cient matrix �GL�	��

��� Eigenvalues and Eigenvectors

Given a n� n matrix A� its eigenvalues and eigenvectors are the solutions to the equation

Ax � �x�

where � is the eigenvalue and x �� � is the eigenvector� The eigenvalues of a matrix are the
roots of its characteristic polynomial determinant�A� �I� � �� As a result� the eigenvalues
of a diagonal matrix� upper triangular matrix or a lower triangular matrix correspond to the
elements on its diagonal� E�cient algorithms for computing eigenvalues and eigenvectors are
well known� �GL�	�� and their implementations are available as part of packages EISPACK�
�GBDM���� and LAPACK �Dem�	� ABB�	��� Most algorithms make use of the similarity
transformations of the form A

�

� QAQ��� where Q is any non�singular n � n matrix�
This transformation has the characteristic that the eigenvalues of A and A

�

are identical�
Furthermore� if y is an eigenvector of A

�

� Q��y is an eigenvector of A� Standard algorithms
for eigenvalue computations� like the QR algorithm� choose Q to be an orthogonal matrix�
since similarity transformation by an orthogonal matrix is a numerically stable operation
�GL�	�� Given A the eigendecomposition algorithm converts it into a Hessenberg matrix
using a sequence of similarity transformations by orthogonal matrices� That is�

H � QTAQ�

where Q is an orthogonal matrix and H is an Hessenberg matrix� Given H� the eigende�
composition algorithm proceeds by similarity transformations by orthogonal matrices� Each
of these similarity transformation corresponds to a QR iteration of the form


H� sI � UR� ����

��



where s is a scalar referred to as a shift� U is an orthogonal matrix and R is an upper
triangular matrix� This step corresponds to QR factorization of the matrix H � sI� Given
U and R� the next step of the iteration computes a modi�ed Hessenberg matrix given by

H � RU� sI�

The shifts are chosen appropriately such that the matrix converges to its to its real Schur
decomposition of the form �GL�	� Wil
��


QAQ�� �

�
BBBB�

R�� R�� � � � R�m

� R�� � � � R�m

���
���

���
���

� � � � � Rmm

�
CCCCA
� ����

where eachRii is either a ��� matrix or a ��� matrix having complex conjugate eigenvalues�
Given the real Schur decomposition� computing the eigenvalues is a trivial operation� Many
a times a matrix has complex eigenvalues� the above algorithm is modi�ed to double shift
consisiting of a complex number and its conjugate� More details are given in �GL�	�� We
will use the QR algorithm with double implicit shift strategy to compute the real Schur
decomposition� Given the matrix eigenvalues� real Schur decomposition and matrix Q�
computing eigenvectors corresponds to solving quasi triangular systems �GL�	� Wil
��� The
running time of these algorithms is O�n��� However� the constant in front of n� can be as
high as �� for computing all the eigenvalues and eigenvectors�

��� Generalized Eigenvalue Problem

Given n� n matrices� A and B� the generalized eigenvalue problem corresponds to solving

Ax � �Bx�

We represent this problem as eigenvalues of A � �B� The vectors x �� � correspond to the
eigenvectors of this equation� If B is non�singular and its condition number �de�ned in the
next section� is low� the problem can be reduced to an eigenvalue problem by multiplying
both sides of the equation by B�� and thereby obtaining


B��Ax � �x�

However� B may have a high condition number and such a reduction can cause numerical
problems� Algorithms for the generalized eigenvalue problems apply orthogonal transforma�
tions to A and B� In particular� we use the QZ algorithm for computing the eigenvalues and
eigenvectors for this problem �GL�	�� Its running time is O�n��� However� the constant can
be as high as ��� Generally� it is slower by a factor of ��� to � as compared to QR algorithm
for computing eigenvalues and eigenvectors of a matrix�

��



��� Condition Numbers

The condition number of a problem measures the sensitivity of a solution to small changes
in the input� A problem is ill�conditioned if its condition number is large� and ill�posed

if its condition number is in�nite� These condition numbers are used to bound errors in
computed solutions of numerical problems� More details on condition numbers are given in

GL�	� Wil���� The implementations of these condition number computations are available
as part of LAPACK 
BDM�	��

In our algorithm� we will be performing computations like linear equation solving and
computing eigenvalues and eigenvectors of a matrix� Therefore� we will be concerned with
the numerical accuracy of these operations�

��� Condition Number of a Square Matrix

The condition number of a square matrix corresponds to ���A�
�n�A�

� where �� and �n are the
largest and smallest singular values� This condition number is used in determining the ac�
curacy of A�� computation or solving linear systems of the form Ax 
 b� Computing the
singular values takes O�n�� time� which is rather expensive� Good estimators of O�n�� com�
plexity� once Ax 
 b has been solved via Gaussian elimination� are available in LINPACK
and LAPACK and we use them in our algorithm�

��� Condition Number of Simple Eigenvalues

Let � be a simple� eigenvalue of the n�n matrix� A� with unit right eigenvector x and unit
left eigenvector y� That is� Ax 
 �x� yTA 
 �yT and k x k�
k y k�
 �� Here k v k�
stands for the ��norm of a vector� Let P 
 �x � yT ���yT � x� be the spectral projector�
Therefore� k P k�


�
jyT xj

� Let E be a perturbation of A� and �� 
k E k�� Moreover� let �
�

be the perturbed eigenvalue of A�E� Then

j �
�

� � j� �� k P k� �O��
�
���

Thus� for su�ciently small perturbations in the matrix� the perturbation in the eigenvalues
is a function of k P k��

���� Condition Number of Clustered Eigenvalues

In many cases we are interested in computing the condition numbers of a cluster of eigen�
values� We use these condition numbers in determining the accuracy of eigenvalues with
multiplicity greater than one� We represent the real Schur decomposition as

A
�




�
A�� A��

� A��

�

�A simple eigenvalue is an eigenvalue of multiplicity one�

�	



and the eigenvalues of the m � m matrix A�� are exactly those we are interested in� In
particular we are interested in bounding the perturbation in the average of the eigenvalues
of the cluster� represented as � 
 trace�A����m�

To compute the error bound� we de�ne the spectral projector

P 


�
Im R

� �

�
�

where R satis�es the system of linear equations

A��R�RA�� 
 A���

Thus� k P k�
 ��� k R k���
���� Computing k P k� is expensive and a cheaper overestimate

is obtained as
k P k

�


 ��� k R k�F �
����

Let E be the perturbation of A and �� 
k E k�� Let �
�

be the average of the perturbed
eigenvalues� Then

j �� �
�

j� �� k P k� �O��
�
���

We substitute k P k
�

to obtain a slightly weaker bound on the perturbation in � for su��
ciently small ��� The average of a cluster is often much better conditioned than individual
eigenvalues in the cluster�

���� Accuracy of Right Eigenvectors

As far as eigenvectors are concerned� bounds for their accuracy are given in detail in 
Wil���
ABB�	��� However� we will not be computing these bounds to analyze the accuracy of
our computation� The actual bounds tell us about the maximum error in any term of the
eigenvector� We only assume that each term of the eigenvector has a similar bound on the
absolute error� Thus� the terms of maximum magnitude have the smallest bound on their
relative error�

���� Symbolic Preprocessing Program

� MAPLE program for symbolic preprocessing of inverse kinematics�
� Given a n�jointed robot manipulator� with any combination of joints
� �prismatic or revolute�� and the variables de�ning the position
� of end�e�ector �six of them�� this program eliminates �ve of the joint
� variables� In other words it is computing the sparse resultant of the
� given system of equations�

� In the following example the symbolic derivation of the entries of
� matrices P and Q for general �R is presented� Each entry of P and

��



� Q is a function of the robot manipulator parameters and the variables
� representing the position of the end e�ector� A lot of properties
� related to the geometry of the manipulator can be interpreted from
� the linear algebra structure of P and Q�
� � We use the Denavit�Hartenberg notation�

with�linalg��
readlib�evalm��
readlib�write��

� X�� ���� X� are the joint angles� They are the variable� which will be
� eliminated�

C� �
 cos�X��� C� �
 cos�X��� C� �
 cos�X���
C� �
 cos�X��� C� �
 cos�X��� C� �
 cos�X���
S� �
 sin�X��� S� �
 sin�X��� S� �
 sin�X���
S� �
 sin�X��� S� �
 sin�X��� S� �
 sin�X���

� Y�� ���� Y� are the twist angles�
M� �
 sin�Y ��� M� �
 sin�Y ��� M� �
 sin�Y ���
M� �
 sin�Y ��� M� �
 sin�Y ��� M� �
 sin�Y ���
L� �
 cos�Y ��� L� �
 cos�Y ��� L� �
 cos�Y ���
L� �
 cos�Y ��� L� �
 cos�Y ��� L� �
 cos�Y ���

� lx�ly�lz�mx�my�mz�nx�ny�nz correspond to the entries of the orthogonal � matrix de�ning
the orientation of the end�e�ector�
u �
 mx �M� � nx � L��
v �
 my �M� � ny � L��
w �
 mz �M� � nz � L��

p �
 �lx � a�� �mx �M� � nx � L�� � d� � qx�
q �
 �ly � a�� �my �M� � ny � L�� � d� � qy�
r �
 �lz � a�� �mz �M� � nz � L�� � d� � qz�

b� �
 C� � u� S� � v�
b� �
 �L� � �S� � u� C� � v� �M� � w�
b� �
M� � �S� � u� C� � v� � L� � w�

h� �
 C� � p � S� � q � a��
h� �
 �L� � �S� � p � C� � q� �M� � �r � d���
h� �
 M� � �S� � p� C� � q� � L� � �r � d���

��



m� �
 S� �M��
m� �
 C� � L� �M� �M� � L��
m� �
 �C� �M� �M� � L� � L��

g� �
 C� � a� � a��
g� �
 �S� � L� � a� �M� � d��
g� �
 S� �M� � a� � L� � d� � d��

r� �
 C� �m� � S� �m��
r� �
 �L� � �S� �m��C� �m�� �M� �m��
r� �
M� � �S� �m�� C� �m�� � L� �m��

f� �
 C� � g� � S� � g� � a��
f� �
 �L� � �S� � g�� C� � g�� �M� � g��
f� �
M� � �S� � g� �C� � g�� � L� � g� � d��

LM �
 array�

C�� S�� ��� 
S���C�� ��� 
�� �� �����
RM �
 array�

C�� S�� ��� 
S���C�� ��� 
�� �� �����
CM �
 array�

�� �� ��� 
���L��M��� 
��M�� L�����
F �
 array�
f�� f�� f����
H �
 array�
h�� h�� h����
R �
 array�
r�� r�� r����
B �
 array�
b�� b�� b����
C �
 array�
a�� �� d����
PL �
 multiply�RM�H��
PR �
 add�multiply�multiply�CM�LM�� F �� C��
LL �
 multiply�RM�B��
LR �
 multiply�multiply�CM�LM�� R��

� These are the left and right hand sides of the six equations � de�ning the kinematics
problem�
Leq� �
 PL
��� Leq� �
 PL
��� Leq� �
 PL
���
Req� �
 PR
��� Req� �
 PR
��� Req� �
 PR
���
Leq� �
 LL
��� Leq� �
 LL
��� Leq� �
 LL
���
Req� �
 LR
��� Req� �
 LR
��� Req� �
 LR
���

� Using dot and cross products of � equations to derive the rest of � the � equations�
temp �
 dotprod�PL�PL�� Leq� �
 simplify�temp��
temp �
 dotprod�PR�PR�� Req� �
 simplify�temp��
temp �
 dotprod�PL�LL�� Leq� �
 simplify�temp��
temp �
 dotprod�PR�LR�� Req� �
 simplify�temp��
vtemp �
 crossprod�PL�LL�� Leq	 �
 simplify�vtemp
����

��



Leq�� �
 simplify�vtemp
���� Leq�� �
 simplify�vtemp
����
vtemp� �
 crossprod�PR�LR�� Req	 �
 simplify�vtemp�
����
Req�� �
 simplify�vtemp�
���� Req�� �
 simplify�vtemp�
����
temp� �
 scalarmul�LL�Leq��� temp� �
 �� � Leq��
temp� �
 scalarmul�PL� temp��� vtemp� �
 add�temp�� temp���
Leq�� �
 simplify�vtemp�
���� Leq�� �
 simplify�vtemp�
����
Leq�� �
 simplify�vtemp�
����

temp� �
 scalarmul�LR�Req��� temp� �
 �� �Req��
temp� �
 scalarmul�PR� temp��� vtemp� �
 add�temp�� temp���
Req�� �
 simplify�vtemp�
���� Req�� �
 simplify�vtemp�
����
Req�� �
 simplify�vtemp�
����

�
� Collecting various coe�cients from the �� equations�
lmat �
 array������� ���	��

� The following set of calls is repeated for the right hand side of
� each equation� Req��Req���
� As a result the matrix coe�cients are being computed�

row �
 �� exp �
 expand�Req��� exp �
 collect�exp� cos�X����
temp �
 coeff�exp� cos�X��� ��� exp �
 exp� temp � cos�X�� � cos�X���
temp �
 coeff�exp� cos�X��� ���
exp �
 exp� temp � cos�X�� � cos�X�� � cos�X���
exp �
 collect�exp� cos�X���� temp �
 coeff�exp� cos�X��� ���
exp �
 exp� temp � cos�X�� � cos�X��� temp �
 coeff�exp� cos�X��� ���
exp �
 exp� temp � cos�X�� � cos�X�� � cos�X���
exp �
 collect�exp� cos�X����
temp �
 coeff�exp� cos�X��� ��� exp �
 exp� temp � cos�X�� � cos�X���
temp �
 coeff�exp� cos�X��� ���
exp �
 exp� temp � cos�X�� � cos�X�� � cos�X���
exp �
 collect�exp� sin�X���� temp �
 coeff�exp� sin�X��� ���
exp �
 exp� temp � sin�X�� � sin�X��� temp �
 coeff�exp� sin�X��� ���
exp �
 exp� temp � sin�X�� � sin�X�� � sin�X���
exp �
 collect�exp� sin�X����
temp �
 coeff�exp� sin�X��� ��� exp �
 exp� temp � sin�X�� � sin�X���
temp �
 coeff�exp� sin�X��� ���
exp �
 exp� temp � sin�X�� � sin�X�� � sin�X���
exp �
 collect�exp� sin�X���� temp �
 coeff�exp� sin�X��� ���
exp �
 exp� temp � sin�X�� � sin�X��� temp �
 coeff�exp� sin�X��� ���
exp �
 exp� temp � sin�X�� � sin�X�� � sin�X��� exp �
 expand�exp��

��



exp �
 collect�exp� sin�X���� exp� �
 coeff�exp� sin�X����
exp� �
 expand�exp� exp� � sin�X���� exp� �
 collect�exp�� sin�X����
exp� �
 coeff�exp�� sin�X���� exp� �
 expand�exp�� exp� � sin�X����
exp� �
 collect�exp�� cos�X���� exp� �
 coeff�exp�� cos�X����
exp� �
 expand�exp�� exp� � cos�X���� exp� �
 collect�exp�� cos�X����
exp� �
 coeff�exp�� cos�X���� exp� �
 expand�exp�� exp� � cos�X����
exp� �
 collect�exp�� sin�X���� exp	 �
 coeff�exp�� sin�X����
exp�� �
 expand�exp�� exp	 � sin�X���� exp�� �
 collect�exp��� cos�X����
exp�� �
 coeff�exp��� cos�X���� exp�� �
 expand�exp�� � exp�� � cos�X����
exp� �
 collect�exp�� cos�X���� exp�� �
 coeff�exp�� cos�X����
exp�� �
 expand�exp�� exp�� � cos�X���� exp�� �
 collect�exp��� sin�X����
exp�� �
 coeff�exp��� sin�X����
lmat
row� �� �
 exp�� lmat
row� �� �
 exp�� lmat
row� �� �
 exp	�
lmat
row� �� �
 exp��� lmat
row� �� �
 exp�� lmat
row� �� �
 exp���
lmat
row� �� �
 exp��� lmat
row� �� �
 exp���
check �
 expand�Req�� lmat
row� �� � S� � S�� lmat
row� �� � S� � C��
lmat
row� �� � C� � S�� lmat
row� �� � C� � C�� lmat
row� �� � S� � lmat
row� �� �
C�� lmat
row� �� � S�� lmat
row� �� � C��� lmat
row� 	� �
 check�

� The following set of calls is repeated for the left hand side of
� each equation� Leq��Leq���
� As a result the matrix coe�cients are being computed�

rmat �
 array������� ���	��

row �
 �� exp �
 expand�Leq��� exp �
 collect�exp� sin�X����
exp� �
 coeff�exp� sin�X���� exp� �
 expand�exp� exp� � sin�X����
exp� �
 collect�exp�� sin�X���� exp� �
 coeff�exp�� sin�X����
exp� �
 expand�exp�� exp� � sin�X���� exp� �
 collect�exp�� cos�X����
exp� �
 coeff�exp�� cos�X���� exp� �
 expand�exp�� exp� � cos�X����
exp� �
 collect�exp�� cos�X���� exp� �
 coeff�exp�� cos�X����
exp� �
 expand�exp�� exp� � cos�X���� exp� �
 collect�exp�� sin�X����
exp	 �
 coeff�exp�� sin�X���� exp�� �
 expand�exp�� exp	 � sin�X����
exp�� �
 collect�exp��� cos�X���� exp�� �
 coeff�exp��� cos�X����
exp�� �
 expand�exp��� exp�� � cos�X���� exp� �
 collect�exp�� cos�X����
exp�� �
 coeff�exp�� cos�X���� exp�� �
 expand�exp�� exp�� � cos�X����
exp�� �
 collect�exp��� sin�X���� exp�� �
 coeff�exp��� sin�X����
rmat
row� �� �
 exp�� rmat
row� �� �
 exp�� rmat
row� �� �
 exp	�
rmat
row� �� �
 exp��� rmat
row� �� �
 exp�� rmat
row� �� �
 exp���
rmat
row� �� �
 exp��� rmat
row� �� �
 exp���
check �
 expand�Leq�� rmat
row� �� � S� � S�� rmat
row� �� � S� � C��
rmat
row� �� � C� � S� � rmat
row� �� � C� � C�� rmat
row� �� � S� � rmat
row� �� � C�

��



� rmat
row� �� � S� � rmat
row� �� � C���
rmat
row� 	� �
 check�

� We break up the linear system of �� equations into two di�erent sets
� of equations�

Rsys� �
 array������ ������
Rsys� �
 array������ ������
Lsys� �
 array������ ���	��
Lsys� �
 array������ ���	��

for i from � by � to � do
for j from � by � to � do
temp �
 rmat
i� j��
Rsys�
i� j� �
 temp�
temp �
 lmat
i� j��
temp �
 collect�temp� cos�X����
temp �
 collect�temp� sin�X����
Lsys�
i� j� �
 temp�
od�
temp �
 lmat
i� 	�� rmat
i� 	��
temp �
 collect�temp� cos�X����
temp �
 collect�temp� sin�X����
Lsys�
i� 	� �
 temp�
od�

for i from 	 by � to �� do
for j from � by � to � do
temp �
 rmat
i� j��
Rsys�
i� �� j� �
 temp�
temp �
 lmat
i� j��
temp �
 collect�temp� cos�X����
temp �
 collect�temp� sin�X����
Lsys�
i� �� j� �
 temp�
od�
temp �
 lmat
i� 	�� rmat
i� 	��
temp �
 collect�temp� cos�X����
temp �
 collect�temp� sin�X����
Lsys�
i� �� 	� �
 temp�
od�

Rsim� �
 array������ ������

��



Rsim� �
 array������ ������
Lsim� �
 array������ ���	��
Lsim� �
 array������ ���	��

Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���
Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���
Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���
Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���
Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���
Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���
Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���
Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���
Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���
Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���
Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���
Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���
Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���
Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���
Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���
Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���

for i from � by � to 	 do
Lsim�
�� i� �
 Lsys�
�� i��
od�
for i from � by � to 	 do
Lsim�
�� i� �
 Lsys�
�� i��
od�
for i from � by � to 	 do
Lsim�
�� i� �
 Lsys�
�� i��
od�
for i from � by � to 	 do
Lsim�
�� i� �
 Lsys�
�� i��
od�
for i from � by � to 	 do
Lsim�
�� i� �
 Lsys�
�� i��
od�
for i from � by � to 	 do
Lsim�
�� i� �
 Lsys�
�� i��
od�
for i from � by � to 	 do
Lsim�
�� i� �
 Lsys�
�� i��

��



od�
for i from � by � to 	 do
Lsim�
�� i� �
 Lsys�
�� i��
od�

Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���
Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���
Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���
Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ��� Rsim�
�� �� �
 Rsys�
�� ���

for i from � by � to 	 do
Lsim�
�� i� �
 Lsys�
�� i��
od�
for i from � by � to 	 do
Lsim�
�� i� �
 Lsys�
�� i��
od�
for i from � by � to 	 do
Lsim�
�� i� �
 Lsys�
�� i��
od�
for i from � by � to 	 do
Lsim�
�� i� �
 Lsys�
�� i��
od�
for i from � by � to 	 do
Lsim�
�� i� �
 Lsys�
�� i��
od�
for i from � by � to 	 do
Lsim�
�� i� �
 Lsys�
�� i��
od�

� The � X � matrix� Rsim�� corresponds exactly to Q�� a minor of Q�
� Each entry of Rsim� is a function of constants like manipulator parameters
� and the right hand side variables�

� The � X � matrix� Rsim�� corresponds exactly to Q�� a minor of Q�
� Each entry of Rsim� is a function of constants like manipulator parameters
� and the right hand side variables�

� The � X 	 matrix� Lsim�� corresponds exactly to P�� a minor of P�
� Each entry of Lsim� is a linear function of S� and C�� The coe�cients
� are functions of the constants�

� The � X 	 matrix� Lsim�� corresponds exactly to P�� a minor of P�

��



� Each entry of Lsim� is a linear function of S� and C�� The coe�cients
� are functions of the constants�

��


