
Interactive and Exact Collision Detection for

Multi�Body Environments

Jonathan D� Cohen �

Computer Science Department

University of North Carolina

Chapel Hill� NC �������	��

cohenj�cs�unc�edu

Ming C� Lin

Computer Science Department

Naval Postgraduate School

Monterey� CA ���
�

mlin�cs�nps�navy�mil

Dinesh Manocha y

Computer Science Department

University of North Carolina

Chapel Hill� NC �������	��

manocha�cs�unc�edu

Madhav K� Ponamgi z

Computer Science Department

University of North Carolina

Chapel Hill� NC �������	��

ponamgi�cs�unc�edu

Abstract� We present an algorithm for exact collision detection in interactive environments�

Such environments are characterized by the number of objects undergoing motion and the

complexity of the models� We do not assume that the motions of the objects are expressible

as closed�form functions of time� nor do we assume any limitations on their velocities� The

algorithm uses a two�level hierarchical representation for each model to selectively compute

the precise contact between objects� achieving real�time performance without compromising

accuracy� In large environments with n moving objects� it uses the temporal and geomet�

ric coherence that exists between successive frames to overcome the bottleneck of O�n��

pairwise comparisons� The algorithm has been successfully demonstrated in architectural

walkthrough and simulated environments� In particular� the algorithm takes less than ���	

of a second to determine all the collisions and contacts in an environment consisting of more

than �			 moving polytopes� each consisting of more than 
	 faces�

Additional Keywords and Phrases� interference� contact� geometric coherence� simu�

lations� virtual environment� walkthrough

�Supported in part by NSF MIP��������
ySupported in part by a Junior Faculty Award	 University Research Award	 NSF Grant CCR���
����	

ARPA Contract DABT������C���� and NSF�ARPA Science and Technology Center for Computer Graph�

ics and Scienti�c Visualization	 NSF Prime Contract Number �����
��
zSupported in part by NSF MIP�������� and NSF Grant CCR���
����

�



� Introduction

Collision detection has been a fundamental problem in computer animation� physically�based

modeling� geometric modeling� and robotics� In these applications� interactions between

moving objects are modeled by dynamic constraints and contact analysis� The objects�

motions are constrained by various interactions� including collisions� This paper focuses on

collision detection for virtual environments and complex simulations�

A virtual environment� like a walkthrough� creates a computer�generated world� �lled

with virtual objects� Such an environment should give the user a feeling of presence� which

includes making the images of both the user and the surrounding objects feel solid� For

example� the objects should not pass through each other� and things should move as expected

when pushed� pulled or grasped� Such actions require accurate collision detection� if they

are to achieve any degree of realism� However� there may be hundreds� even thousands of

objects in the virtual world� so a naive algorithm could take a long time just to check for

possible collisions as the user moves� This is not acceptable for virtual environments� where

the issues of interactivity impose fundamental constraints on the system Zel���� A fast and

interactive collision detection algorithm is a fundamental component of a complex virtual

environment� Fig� � shows a typical walkthrough environment�

Figure �� A Virtual Walkthrough

Complex simulations involve many objects moving according to some physical parame�

ters� For example� virtual prototyping systems create electronic representations of mechan�

ical parts which need to be tested for interconnectivity� functionality� and reliability� The

testing process necessitates simulations containing hundreds of parts� whose complex inter�

�



actions are based on physics and geometry� Such simulations rely on fast� accurate collision

detection schemes�

The objective of collision detection in both virtual environments and simulations is to

report geometric contacts between objects� If we know the positions and orientations of

the objects in advance� we can solve collision detection as a function of time� However�

this is not the case in virtual environments or other interactive applications� In fact� in a

walkthrough environment� we usually do not have any information regarding the maximum

velocity or acceleration� because the user may move with abrupt changes in direction and

speed� Because of these unconstrained variables� collision detection is currently considered

to be one of the major bottlenecks in building interactive simulated environmentsPen�	��

Main Contribution� We present an algorithm for interactive and exact collision

detection in complex environments� In contrast to the previous work� we show that accurate�

real�time performance can be attained in most environments if we use coherence not only to

speed up pairwise interference tests� but also to reduce the actual number of these tests we

perform� We are able to sucessfully trim theO�n�� possible interactions of n simulataneously

moving objects to O�n �m� where m is the number of objects �very close� to each other�

In practice m is a small number and in the worst case can be O�n��� Our approach is

�exible enough to mitigate the problem of choosing an appropriate time step common in

many �static turned dynamic� detection algorithms� Moreover� we do not restrict ourselves

to the sparse environment only� because in many interesting environments �e�g� vibrating

parts feeder bowl� this assumption does not hold� Nor do we make any assumptions about

object velocity or acceleration as required by a space�time approach Hub���� this type of

information may be available in a simulation but is typically absent in a truly interactive

virtual environment� The algorithm makes use of spatial and temporal coherence between

successive instances and works very well in practice�

The rest of the paper is organized as follows� Section � reviews some of the previous

work in collision detection� Section � de�nes the concept of coherence and describes an exact

pairwise collision detection algorithm which applies it� Section � describes our algorithm for

performing collision detection among multiple objects� This algorithm e�ciently reduces

the number of pairwise collision tests using a dimension reduction technique� Section 


describes the implementation of our algorithm� Section � presents our experimental results

on architectural walkthrough environments and simulations�

� Previous Work

The problem of collision detection has been extensively studied in robotics� However�

the goal in robotics has been the planning of collision�free trajectories between obstacles

Can��� Lat��� LPW��� Sha���� This di�ers from virtual environments and physically�

based simulations� where the motion is subject to dynamic constraints or external forces

and cannot typically be expressed as a closed form function of time �

The problem has also been addressed in computational geometry� The emphasis in

the computational geometry literature has been on theoretically e�cient intersection de�

�



tection algorithms for pairs of objects at a single instance in time AS�	� Cha��� CD���

DK�	� Ede���� For convex ��polytopes � linear time algorithms based on linear program�

ming Meg��� Sei�	� and tracking closest points GJK��� have been proposed� More recently�

temporal and geometric coherence have been used to devise algorithms based on checking lo�

cal features of pairs of convex ��polytopes Bar�	� Lin���� Alonso et al�ASF��� use bounding

boxes and spatial partitioning to test all O�n�� pairs of arbitrary polyhedral objects�

To handle curved models� algorithms based on interval arithmetic have been proposed

by Duf��� HBZ�	� SWF����� Faster algorithms using coherence have been proposed for

curved models de�ned algebraically or using NURBs LM����

Algorithms for collision detection between single pairs of objects are often extended to

multiple�object interactions� An early algorithm of complexity O�n�m��� where n is the

number of polyhedra with m vertices per polyhedron� is described in MW����

Di�erent methods have been proposed to overcome the bottleneck of O�n�� pairwise

tests in an environment of n bodies� The simplest of these are based on spatial subdivision

BF��� Lev���� The space is divided into cells of equal volume� and at each instance the

objects are assigned to one or more cells� Collisions are checked between all object pairs

belonging to a particular cell� This approach works well for sparse environments in which

the objects are uniformly distributed through the space� Object space coherence has been

used extensively in ray tracing for the past decade SML�	��

Another approach operates directly on four�dimensional volumes swept out by object

motion over time Cam�	� Hub���� This is di�cult not only to visualize� but to model

as well� especially when the motion is complex and abrupt� In addition� computing the

intersection of complex hyper�cones induced by acceleration or uncertainty of position is

non�trivial�

None of these algorithms adequately address the issue of collision detection in an interac�

tive virtual environment� A complex� interactive virtual environment poses a new challenge

to the detection problem because it requires performance at interactive rates for thousands

of pairwise tests� Very recently� Hubbard has proposed a solution to address this prob�

lem by an interactive collision detection algorithm that trades accuracy for speed Hub����

However� exact contact determination is required for realistic simulations� so this tradeo� is

not always acceptable� In an early extension of their work Lin and Canny LC��� proposed

a scheduling scheme to handle multiple moving objects� Dworkin and Zeltzer extended

this work for a sparse model DZ���� The model works well for sparse environments only

and requires information about time�parameterized trajectories of the objects to predict the

possible intersection�

� Background

In this section� we will �rst discuss the importance of coherence� This central concept leads

us to present the exact collision detection algorithm for testing pairs of objects� Later we

�We shall refer to a bounded d�dimensional polyhedral set as a convex d�polytope	 or brie�y polytope�

In common parlance	 �polyhedron� is used to denote the union of the boundary and of the interior in E
��

�



will use this algorithm as a component of the multi�body collision detection scheme�

��� Temporal and Geometric Coherence

Temporal coherence is the property that the application state does not change signi�cantly

between time steps� or frames� The objects move only slightly from frame to frame� This

slight movement of the objects translates into geometric coherence� because their geome�

try� de�ned by the vertex coordinates� changes minimally between frames� The underlying

assumption is that the time steps are small enough that the objects to do not travel large

distances between frames�

A simulation with n independently moving objects can have O�n�� possible collisions at

a given time step� In general� however� most con�gurations of a simulation have far fewer

than O�n�� collisions� Combining temporal and geometric coherence with this observation

has resulted in some e�cient collision detection schemes between single pairs of objects

Bar�	� Lin��� LM����

��� Pairwise Collision Detection for Convex Polytopes

Here we will review an e�cient collision detection algorithm which tracks closest points

between pairs of convex polytopes LC��� Lin���� This algorithm is used at the second level

of collision detection to determine the exact contact status between convex polytopes� The

method maintains a pair of closest features for each convex polytope pair and calculates the

Euclidean distance between the features to detect collisions� This approach can be used in a

static environment� but is especially well�suited for dynamic environments in which objects

move in a sequence of small� discrete steps� The method takes advantage of coherence� the

closest features change infrequently as the polytopes move along �nely discretized paths�

The algorithm runs in expected constant time if the polytopes are not moving swiftly� Even

when a closest feature pair is changing rapidly� the algorithm takes only slightly longer �the

runtime is proportional to the number of feature pairs traversed� which is a function of the

relative motion the polytopes undergo��

����� Voronoi Regions

We represent each convex polytope using a modi�ed boundary representation� Each poly�

tope data structure has �elds for its features �faces� edges� and vertices� and Voronoi regions

�de�ned below�� Each feature �a vertex� an edge� or a face� is described by its geometric

parameters and its neighboring features� i�e� the topological information of incidences and

adjacencies� In addition� we precompute the Voronoi region for each feature�

De�nition� A Voronoi region �as shown in Fig� �� associated with a feature is a set of

points closer to that feature than to any other PS�
��

The Voronoi regions form a partition of space outside the polytope according to the

closest feature� The collection of Voronoi regions of each polytope is the generalized Voronoi

diagram of the polytope� Note that the generalized Voronoi diagram of a convex polytope






Figure �� Voronoi Regions

has linear size and consists of polyhedral regions� A cell is the data structure for a Voronoi

region� It has a set of constraint planes which bound the Voronoi region with pointers to

the neighboring cells �which each share a constraint plane with it� in its data structure� If a

point lies on a constraint plane� then it is equi�distant from the two features which share this

constraint plane in their Voronoi regions� If a point P on object A lies inside the Voronoi

region of the feature fB on object B� then fB is a closest feature to the point P �

����� Feature Tests

Our method for �nding closest feature pairs is based on Voronoi regions� We start with a

candidate pair of features� one from each polytope� and check whether the closest points

lie on these features� Because the polytopes and their faces are convex� this is a local test

involving only the neighboring features of the current candidate features� If either feature

fails the test� we step to a neighboring feature of one or both candidates� and try again� With

some simple preprocessing� we can guarantee that every feature has a constant number of

neighboring features� This is how we can verify or update the closest feature pair in expected

constant time�

When a feature pair fails the test� the new pair we choose is guaranteed to be closer

than the old one� Even if the closest features are changing rapidly� say once per step

along the path� our algorithm takes only slightly longer� In this case� the running time is

proportional to the number of feature pairs traversed in this process� Because the Euclidean

distance between feature pairs must always decrease when a switch is made Lin���� cycling

is impossible for non�penetrating objects� An example of this algorithm is given in Fig� ��

�



Figure �� An Example of collision detection for convex polytopes

For example� given a pair of features� featA and featB� on objects A and B� we �rst

�nd a pair of nearest points� PA and PB� between these two features� Then� we need to

verify that featB is truly the closest feature on B to PA �i�e� PA lies inside the Voronoi

region of featB� and featA is truly the closest feature on A to PB �i�e� PB satis�es a similar

applicability test of featA�� If either test fails� a new� closer feature is substituted� and the

new pair of features is tested� Eventually� we must reach the closest pair of features�

��� Penetration Detection for Convex Polytopes

The core of the collision detection algorithm is built using the properties of Voronoi regions

of convex polytopes� As mentioned earlier in Sec ������ the Voronoi regions form a partition

of space outside the polytope� When polytopes interpenetrate� some features may not fall

into any Voronoi regions� This can lead to cycling of feature pairs if special care is not

taken� So it is important that we have a module which detects interpenetration�

� Pseudo Voronoi Regions�

This module partitions the interior space of the convex polytopes� The partitioning

does not have to form the exact Voronoi regions� because we are not interested in knowing

the closest features between two interpenetrating polytopes but only detecting such a case�

We can calculate a close approximation to internal Voronoi regions� then use this to detect

�



Figure �� Subpart hierarchical tree of an aircraft

interpenetrating polytopes�

We can partition the interior of a polytope as follows� We calculate the centroid of each

convex polytope� which is the weighted average of all the vertices� and then construct the

constraint planes of each face� Each interior constraint plane of a face F is a hyperplane

passing through the centroid and an edge in F �s boundary� except one additional hyper�

plane containing the face F itself� If all the faces are equi�distant from the centroid� these

hyperplanes form the exact Voronoi diagram for the interior of the polytope�

We can now walk from the external Voronoi regions into the pseudo Voronoi regions

when necessary� If either of the closest features falls into a pseudo Voronoi region at the end

of the walk� we know the objects are interpenetrating� Ensuring convergence as we walk

through pseudo Voronoi regions requires special case analysis�

��� Extension to Non�Convex Objects

We can extend the collision detection algorithm for convex polytopes to handle non�convex

objects� such as articulated bodies� by using a hierarchical representation� In the hierarchical

representation� the internal nodes can be convex or non�convex sub�parts� but all the leaf

nodes are convex polytopes�

Beginning with the leaf nodes� we construct either a convex hull or other bounding

volume and work up the tree� level by level� to the root� The bounding volume associated

with each node is the bounding volume of the union of its children� the root�s bounding

volume encloses the whole hierarchy� We precompute this bounding volume and store it

in the node structure for later use� For instance� a hand may have individual joints in

the leaves� �ngers in the internal nodes� and the entire hand in the root� Fig� � shows a

hierarchical representation of a simpli�ed aircraft�

�



We test for collision between a pair of these hierarchical trees recursively� The collision

detection algorithm �rst tests for collision between the two parent nodes� If there is no

collision between the two parents� the algorithm reports that there is no collision� It returns

the closest feature pair of their bounding volumes� If there is a collision� then the algorithm

expands their children� If there is also a collision among the children� then the algorithm

recursively proceeds down the tree to determine if a collision actually occurs� For complex

objects� using a deep hierarchy tree with a lower branching factor will keep down the number

of nodes which need to be expanded�

The number of levels in a tree is limited to the geometric complexity of the object� Exact

contact status between two trees is determined by the exact collision detection between their

convex sub�parts� This di�ers from Hubbard�s approach Hub��� which creates some number

of nested levels of bounding spheres to achieve an approximate solution to a desired accuracy�

our approach �nds the exact collision points�

� Collision Detection for Multiple Objects

Virtual environments contain both stationary and moving objects� For example� the human

participants may walk through a building where the tables� chairs� etc� remain stationary�

In such an environment� there are N moving objects andM stationary objects� Each of the

N moving objects can collide with the other moving objects� as well as with the stationary

ones� Keeping track of

�
N

�

�
�NM pairs of objects at every time step can become time

consuming as N gets large� To achieve interactive rates� we must reduce this number before

performing pairwise collision tests� The overall architecture of the multiple object collision

detection algorithm is shown in Fig� 
�

Sorting is the key to our Sweep and Prune approach� Assume that each object is sur�

rounded by some ��dimensional bounding volume� We would like to sort these bounding

volumes in ��space to determine which pairs are overlapping� We could then sweep over

these sorted bounded volumes� pruning out the pairs that do not overlap� We only need to

perform exact pairwise collision tests on the remaining pairs�

However� it is not intuitively obvious how to sort objects in ��space� We use a dimen�

sion reduction approach� If two bodies collide in a ��dimensional space� their orthogonal

projections onto the xy� yz� and xz�planes and x� y� and z�axes must overlap� Using this

observation� we choose axis�aligned bounding boxes as our bounding volumes� We can e��

ciently project these bounding boxes onto a lower dimension� and perform our sort on these

lower�dimensional structures�

This approach is quite di�erent from the typical space partitioning approaches used to

reduce the number of pairs� A space partitioning approach puts considerable e�ort into

choosing good partition sizes� But there is no partition size that prunes out object pairs

as ideally as testing for bounding box overlaps� Partitioning schemes may work well for

environments where N is small compared toM � but object sorting works well whether N is

very small or very large�

�



Figure 
� Architecture for Multiple Body Collision Detection Algorithm

We will now present more details of our algorithm� including bounding volume methods

and ��D and ��D sweep and prune techniques� We will also discuss some alternativemethods�

��� Bounding Volumes

Many collision detection algorithms use bounding boxes� spheres� ellipses� etc� to rule out

collisions between objects which are far apart� As stated above� our algorithm uses axis�

aligned bounding boxes to e�ciently identify ��D overlaps� These overlaps trigger the exact

collision detection algorithm�

We have considered two types of axis�aligned bounding boxes� �xed�size bounding cubes

��xed cubes� and dynamically�resized rectangular bounding boxes �dynamic boxes��

� Fixed�Size Bounding Cubes�

We compute the size of the �xed cube to be large enough to contain the object at any

orientation� We de�ne this axis�aligned cube by a center and a radius� Fixed cubes are easy

to recompute as objects move� making them well�suited to dynamic environments� If an

object is nearly spherical� or �fat� Ove���� the �xed cube �ts it well�

As preprocessing steps we calculate the center and radius of the �xed cube� At each

time step as the object moves� we recompute the cube as follows�

�� Transform the center using one vector�matrix multiplication�

�	



�� Compute the minimum and maximum x� y� and z�coordinates by subtracting and

adding the radius from the coordinates of the center�

Step � involves only one vector�matrix multiplication� Step � needs six arithmetic oper�

ations �� additions and � subtractions��

� Dynamically�Resized Rectangular Bounding Boxes�

We compute the size of the rectangular bounding box to be the tightest axis�aligned box

containing the object at a particular orientation� It is de�ned by its minimum and maximum

x� y� and z�coordinates �for a convex object� these must correspond to coordinates of up to

� of its vertices�� As an object moves� we must recompute its minima and maxima� taking

into account the object�s orientation�

For oblong objects rectangular boxes �t better than cubes� resulting in fewer overlaps�

This is advantageous as long as few of the objects are moving� as in a walkthrough envi�

ronment� In such an environment� the savings gained by the reduced number of pairwise

collision detection tests outweighs the cost of moving the dynamically�resized boxes�

As a precomputation� we compute each object�s initial minima and maxima� Then as

an object moves� we recompute its minima and maxima as follows�

Method � 	

We can use a modi�ed routine from the exact collision detection algorithm described

in Sec ����� or Lin���� We can set up � imaginary boundary walls� Each of these walls

is located at a minimal or maximal x� y� or z�coordinate possible in the environment�

Given the previous bounding volume� we can update each vertex of the bounding volume by

performing only half of the modi�ed detection test� because since all the vertices are always

in the Voronoi regions of these boundary walls� Then we proceed as follows�

�� Find the nearest point on the boundary wall to the given vertex at its current �updated�

position�

�� Check to see if the nearest point on the boundary wall lies inside of the Voronoi region

of the previous vertex�

�� If so� the previous vertex is still the extremal point �minimum or maximum in the x�

y� or z�axis� and we are done�

�� Otherwise� walk to the appropriate neighboring vertex returned by the modi�ed exact

collision detection algorithm and repeat the whole process�

This is a modi�cation to the existing routine described in Sec� ������ and it preserves the

properties of locality and coherence�

Method � 	

Alternatively� we can use a simple method based on convexity� At each time step� we do

the following�

��



�� Check to see if the current minimum �or maximum� vertex for the x� y� or z�coordinate

still has the smallest �or largest� value in comparison to its neighboring vertices� If so

we are �nished�

�� Update the vertex for that extremum by replacing it with the neighboring vertex with

the smallest �or largest� value of all neighboring vertices� Repeat the entire process as

necessary�

This algorithm recomputes the bounding boxes at an expected constant rate� Once

again� we are exploiting the temporal and geometric coherence� in addition to the locality

of convex polytopes�

We can optimize this approach by realizing that we are only interested in one coordinate

value of each extremal vertex� say the x coordinate while updating the minimum ormaximum

value along the x�axis� Therefore� there is no need to transform the other two coordinates

in order to compare neighboring vertices� This reduces the number of arithmetic operations

by ����

��� One�Dimensional Sweep and Prune

The one�dimensional sweep and prune algorithm begins by projecting each three�dimensional

bounding box onto the x� y� and z axes� Because the bounding boxes are axis�aligned�

projecting them onto the coordinate axes results in intervals �see Fig� ��� We are interested

in overlaps among these intervals� because a pair of bounding boxes can overlap if and only

if their intervals overlap in all three dimensions�

We construct three lists� one for each dimension� Each list contains the values of the

endpoints of the intervals corresponding to that dimension� By sorting these lists� we can

determine which intervals overlap� In the general case� such a sort would take O�nlogn�

time� where n is the number of objects� We can reduce this time bound by keeping the

sorted lists from the previous frame� changing only the values of the interval endpoints� In

environments where the objects make relatively small movements between frames� the lists

will be nearly sorted� so we can sort in expected O�n� time� Bubble sort and insertion sort

work well for previously sorted lists�

In addition to sorting� we need to keep track of changes in overlap status of interval

pairs �i�e� from overlapping in the last time step to non�overlapping in the current time

step� and vice�versa�� This can be done in O�n� ex� ey � ez� time� where ex� ey � andez are

the number of exchanges along the x� y� andz�axes� This also runs in expected linear time

due to coherence� but ex� ey � andez can each be O�n
�� with an extremely small constant�

Our method is suitable for dynamic environments where coherence is preserved� In

computational geometry literature several algorithms exist that solve the static version of

determining bounding box overlaps in O�nlogd��n�s� time� where d is the dimension of the

bounding boxes and s is the number of pairwise overlaps Ede��� HSS��� SW���� For ��D

bounding boxes we have reduced this from O�nlog�n� s� to O�n� s� by using coherence�

��



t = 1

t = 2

b1 e1 b2 e2 b3 b4 e3 e4

b1 e1 b2 b3 e2 e3 b4 e4

Figure �� Bounding Box Behavior

��� Two�Dimensional Intersection Tests

The two�dimensional intersection algorithm begins by projecting each three�dimensional

axis�aligned bounding box onto the x�y� x�z� and y�z planes� Each of these projections is

a rectangle in ��space� Typically there are fewer overlaps of these ��D rectangles than of

the ��D intervals used by the sweep and prune technique� This results in fewer swaps as

the objects move� We expect that in situations where the projections onto one�dimension

result in densely clustered intervals� the two�dimensional technique will be more e�cient�

The interval tree is a common data structure for performing such two�dimensional range

queries�

An interval tree is actually a range tree properly annotated at the nodes for fast search

of real intervals� Assume that n intervals are given� as b�� e��� � � � � bn� en � where bi and ei
are the endpoints of the interval as de�ned above� The range tree is constructed by �rst

sorting all the endpoints into a list �x�� � � � � xm� in ascending order� where m � �n� Then�

we construct the range tree top�down by splitting the sorted list L into the left subtree Ll

and the right subtree Lr� where Ll � �x�� � � � � xp� and Lr � �xp��� � � � � xm�� The root has the

split value � � xp�xp��
�

� We construct the subtrees within each subtree recursively� creating

the sublists Ll and Lr based on the � at each node� in this fashion until each leaf contains

only an endpoint� The construction of the range tree for n intervals takes O�nlogn� time�

After we construct the range tree� we further link all nodes containing stored intervals in

a doubly linked list and annotate each node if it or any of its descendants contain stored

��



intervals� The embellished tree is called the interval tree�

We can use the interval tree for static query� as well as for the rectangle intersection

problem� To check for rectangle intersection using the sweep algorithm� we take a sweeping

line parallel to the y�axis and sweep in increasing x direction� and look for overlapping y

intervals� As we sweep across the x�axis� y intervals appears or disappear� Whenever a y

interval appears� we check to see if the new interval intersects the old set of intervals stored

in the interval tree� reporting all intervals it intersects as rectangle intersection� and add the

new interval to the tree�

Each query of an interval intersection takes O�logn� k� time where k is the number of

reported intersections and n is the number of intervals� Therefore� reporting intersections

among n rectangles can be done in O�nlogn�K� where K is the total number of intersecting

rectangles�

��� Alternatives to Dimension Reduction

There are many di�erent methods for reducing the number of pairwise tests� such as binary

space partitioning �BSP� trees TN���� octrees� etc� We are currently considering other

approaches for the virtual prototyping of mechanical parts�tools design and simulation�

where hundreds of mechanical parts are rotating and translating in a vibrating bowl�

One of the �rst approaches we implemented uses a priority queue �implemented as a

heap� sorted by the lower bound on the expected time to collision LC��� Lin���� This

works well for a sparse simulation environment where very few collisions are occurring�

However� as the number of objects increases� the number of �near misses� increases as

well� It becomes progressively slow� since too many object pairs need to be re�ordered and

large portions of the priority queue require to be re�shu�ed� In addition� the velocity and

acceleration information is not readily available in a truly interactive environment� such as

the architectural walkthrough environment�

Several practical and e�cient algorithms are based on uniform space division� We divide

space into unit cells �or volumes� and place each object in some cell�s� BF��� Lev���� To

check for collisions� we examine the cell�s� occupied by each object to verify if the cell�s�

is�are� shared by other objects� But� it is di�cult to set a near�optimal size for each cell and

it requires a tremendous amount of allocated memory� If the size of the cell is not properly

chosen� the computation can be rather expensive� For an environment where almost all

objects are of uniform size and fat Ove���� like a vibrating parts feeder bowl� or molecular

modeling application Lev��� Tur���� this algorithm is ideal� especially for execution on a

parallel machine�

Alonso et� al� ASF��� have an algorithm that combines space partitioning with hierar�

chical bounding boxes� The running time of their approach depends on the complexity and

size of the objects being considered for collision detection� They perform a simple convex

decomposition of the objects into voxels and place the objects into bounding boxes� They

e�ciently determine which top�level bounding boxes overlap� then examine them using the

lower�level voxel representation�

��



Edahiro et� al� ETHA��� proposed a O�k� search time� O�n� preprocessing time bucket�

ing algorithm for reporting all segment intersections with a given orthogonal query segment�

where n is the number of orthogonal segments and k is the number of reported intersecting

segments� Although this approach cannot be applied directly to our problem� it indicates the

potential for good average running time performance of the modi�ed bucketing algorithm

for ��D intersection tests�

In fact� Overmars has shown that using a hashing scheme to look up entries and variable

sizes �levels� for cubes or cells� we can use a data structure of O�n� storage space to perform

the point location queries in constant time Ove���� This approach works especially well if

the objects are both fat and not intersecting� since the assumption behind the basic algorithm

depends on the fact that each cube or cell can only be occupied by a �xed number of objects�

If the objects are allowed to interpenetrate each other� this assumption can no longer hold�

Another mechanism must be used to detect interpenetration�

� Implementation

We implemented the collision detection algorithm in a library which deals with polytope

as well as non�convex polyhedral models� A variety of applications can turn on collision

detection� treating the library as a black box� In this section we will describe the implemen�

tation details of the Sweep and Prune algorithm� the exact collision detection algorithm�

the multi�body simulation� and our interactive architectural walkthrough application�

��� Sweep and Prune

As described earlier� the Sweep and Prune algorithm reduces the number of pairwise collision

tests by eliminating polytope pairs that are far apart� It involves three steps� calculating

bounding boxes� sorting the minimum and maximum coordinates of the bounding boxes as

the algorithm sweeps through each list� and determining which bounding boxes overlap� As

it turns out� we do the second and third steps simultaneously�

We calculate bounding boxes using one of two methods� The �rst method involves

computing the tightest �tting axis�aligned bounding box� for each polytope as it moves�

Since the movement may involve rotation as well as translation� the dimensions of the box

may vary signi�cantly� The second method involves computing the smallest axis�aligned

bounding cube that is guaranteed to contain the polytope at any orientation� We have used

both types of bounding boxes in our tests� In general� �xed�size cubes are preferred over

dynamically�resized boxes� except for the class of oblong objects�

Irrespective of which bounding box we choose� each resulting bounding box consists of a

minimum and a maximum coordinate value for each dimension� x� y� and z� These minima

and maxima are maintained in three separate lists� one for each dimension� We sort each list

�To account for uncertainty of model dimensions and unpredictable motion factor as well as to report a

possible intersection instead of an overlap	 we add in a small amount of tolerance � when computing this

bounding box�

�




of coordinate values using a bubble or insertion sort� while maintaining an overlap status

for each bounding box pair�

Bubble and insertion sorts are useful for two reasons� First� temporal coherence makes

it likely that each list is almost sorted� Both sorts operate in nearly linear time for such

lists� because the number of interchanges is small� Second� the sorts swap only adjacent

elements� making it convenient to maintain an overlap status for each polytope pair� We

have found bubble sort works better for environments where only a few object move� such as

the walkthrough� and the insertion sort works better for environments where large numbers

of objects move locally�

In both sorts� the overlap status consists of a boolean �ag for each dimension� Whenever

all three of these �ags are set� the bounding boxes of the polytope pair overlap� These �ags

are only modi�ed when bubble or insertion sort performs a swap� We decide whether or not

to toggle a �ag based on whether the coordinate values both refer to bounding box minima�

both refer to bounding box maxima� or one refers to a bounding box minimum and the

other a maximum�

When a �ag is toggled� the overlap status indicates one of three situations�

�� All three dimensions of this bounding box pair now overlap� In this case� we add the

corresponding polytope pair to a list of active pairs�

�� This bounding box pair overlapped at the previous time step� In this case� we remove

the corresponding polytope pair from the active list�

�� This bounding box pair did not overlap at the previous time step and does not overlap

at the current time step� In this case� we do nothing�

When sorting is completed for this time step� the active pair list contains all the poly�

tope pairs whose bounding boxes currently overlap� We pass this active pair list to the

exact collision detection routine to �nd the closest features of all these polytope pairs and

determine which� if any� of them are colliding�

��� Exact collision detection

The collision detection routine processes each polytope pair in the active list� The �rst time

a polytope pair is considered� we select a random feature from each polytope� otherwise�

we use the previous closest feature pair as a starting point� This previous closest feature

pair may not be a good guess when the polytope pair has just become active� Dworkin and

Zeltzer DZ��� suggest precomputing a lookup table for each polytope to help �nd better

starting guesses�

Our current collision detection implementation uses only the external Voronoi regions of

the polytopes� Due to the lack of internal Voronoi regions in our current implementation�

collisions often require us to perform some tests which may take linear time in the complexity

of the polytope� These tests can be eliminated and reduced to a quick� constant expected

time check by using internal Voronoi regions�

��



��� Multi�body Simulation

The multi�body simulation is an application we developed to test the collision detection

library� It represents a general� non�restricted environment in which objects move in an

arbitrary fashion resulting in collisions with simple impulse responses�

While we can load any convex polytopes into the simulation� we typically use those

generated by the tessellation of random points on a sphere� Unless the number of vertices is

large� the resulting polytopes are not spherical in appearance� they may range from oblong

to fat� in all di�erent random shapes� to present a richer set of models�

The simulation parameters include�

� The number of polytopes

� The complexity of the polytopes� measured as the number of faces

� The rotational velocity of the polytopes

� The translational velocity of the polytopes

� The density of the environment� measured as the ratio of polytope volume to environ�

ment volume

� The bounding volume method used for the Sweep and Prune ��xed�size cubes or

dynamically�resized boxes�

The simulation begins by placing the polytopes at random positions and orientations�

At each time step� the positions and orientations are updated using the translational and

rotational velocities �since the detection routines make no use of pre�de�ned path� the poly�

topes� paths could just as easily be randomized at each time step�� The simulation then calls

the collision detection library and receives a list of colliding polytope pairs� It exchanges

the translational velocities of these pairs to simulate an elastic reaction� It also tests for

collisions with walls of the working volume and reacts by bouncing when a collision occurs�

We use this simulation to test the functionality and speed of the detection algorithm� In

addition� we are able to visually display some of the key features� For example� the bounding

boxes of the polytopes can be rendered at each time step� When the bounding boxes of a

polytope pair overlap� we can render a line connecting the closest features of this polytope�

It is also possible to show all pairs of closest features at each time step� These visual aids

have proven to be useful in indicating actual collisions and additional geometric information

for algorithmic study and analysis� See Frames ��� for examples of the simulation with

several sets of parameters�

��� Walkthrough

The walkthrough is a head�mounted display application that involves a large number of

polytopes depicting a realistic scene ARJ�	�� The integration of our library into such an

��



environment demonstrates that an interactive environment can use our collision detection

library without a�ecting the application�s real�time performance�

The walkthrough creates a virtual environment� such as a kitchen or a porch� The user

travels through this environment� interacting with the polytopes� picking up virtual objects�

changing their scale� and moving them around� Whenever the user�s hand collides with the

polytopes in the environment� the walkthrough provides feedback by making colliding bodies

appear red�

We have incorporated the collision detection library routines into the walkthrough appli�

cation� The scene is composed of polytopes� most of which are stationary� The user�s hand�

composed of several convex polytopes� moves through this complex environment� modifying

other polytopes in the environment� Frames 
�� show a sequence of shots from a kitchen

walkthrough environment� Frame 
 shows the stereo image pair� while the rest show only

the image seen by the left eye�

� Performance Analysis

We measured the performance of the collision detection algorithm using the multi�body

simulation as a benchmark� We pro�led the entire application and tabulated the cpu time

of only the relevant detection routines� All of these tests were run on an HP��			��
	�

The main routines involved in collision detection are those that update the bounding

boxes� sort the bounding boxes� and perform exact collision detection on overlapping bound�

ing boxes� As described in the implementation section� bounding boxes were updated by

two di�erent methods� Using �xed cubes as bounding boxes resulted in higher frame rates

for the parameter ranges we tested�

In each of the �rst four graphs� we plot two lines� The bold line displays the performance

of using dynamically�resized bounding boxes whereas the other line shows the performance

of using �xed�size cubes� All �ve graphs refer to �seconds per frame�� where a frame is one

step of the simulation� involving one iteration of collision detection�

Each graph was produced with the following parameters� by holding all but one constant�

� Number of polytopes� The default value is a �			 polytopes�

� Complexity of polytopes� which we de�ne as the number of faces� The default value is

�� faces�

� Rotational velocity� which we de�ne as the number of degrees the object rotates about

an axis passing through its centroid� The default value is �	 degrees�

� Translational velocity� which we de�ne in relation to the object�s size� We estimate a

radius for the object� and de�ne the velocity as the percentage of its radius the object

travels each frame� The default value is �	 �

� Density� which we de�ne as the percentage of the environment volume the polytopes

occupy� The default value is ��	 �

��



In the graphs� the timing results do not include computing each polytope�s transforma�

tion matrix� rendering times� and of course any minor initialization cost� We ignored these

costs� because we wanted to measure the cost of collision detection alone� Our results show

that collision detection will not hinder the performance of interactive applications�

We have summarized our most important results in the following graphs� Graph � shows

how the number of seconds per frame scales with an increasing number of polytopes� We

took �		 uniformly sampled data points from �	 to �			 polytopes� The �xed and dynamic

bounding box methods scale nearly linearly with a small higher�order term� The dynamic

bounding box method results in a slightly larger non�linear term because the resizing of

bounding boxes causes more swaps during sorting� This is explained further in our discussion

of Graph 
� The seconds per frame numbers in Graph � compare very favorably with the

work of Dworkin and Zeltzer DZ��� as well as those of Hubbard Hub���� For a �			

polytopes in our simulation� our frame rate is �� frames per second using the �xed bounding

cubes�

Graph � shows how the number faces a�ects the frame time� We took �	 uniformly

sampled data points� For the dynamic bounding box method� increasing the model com�

plexity increases the time to update the bounding boxes because �nding the minimum and

maximum values requires walking a longer path around the polytope� The time for exact

collision detection also increases because our current implementation does not include inter�

nal Voronoi regions� as described in the previous implementation section� Surprisingly� the

time to sort the bounding boxes decreases with number of faces� because the polytopes be�

come more spherical and fat� As the polytopes become more spherical and fat� the bounding

box dimensions change less as the polytopes rotate� so fewer swaps are need in the sweeping

step�

For the �xed bounding cube� the time to update the bounding boxes and to sort them

is almost constant� Only the limitations of the exact collision detection implementation� i�e�

the lack of e�cient treatment for penetration� a�ect the frame time�

Graph � shows the e�ect of changes in the density of the simulation volume� For both

bounding box methods� increasing the density of polytope volume to simulation volume

results in a larger sort time and more collisions� The number of collisions scales linearly

with the density of the simulation volume� As the graph shows� the frame time scales well

with the increases in density�

Graphs � through � show the e�ect of rotational velocity on the frame time� The slope

of the line for the dynamic bounding box method is much larger than that of the �xed cube

method� There are two reasons for this di�erence� The �rst reason� which we anticipated�

is that the increase in rotational velocity increases the time required to update the dynamic

bounding boxes� When we walk from the old maxima and minima to �nd the new ones� we

need to traverse more features�

The second reason� which came as a more of a surprise� is the larger number of swapped

minima and maxima in the three sorted lists� Although the three�dimensional volume of the

simulation is fairly sparse� each one�dimensional view of this volume is much more dense�

with many bounding box intervals overlapping� As the boxes grow and shrink� they cause

��



many swaps in these one�dimensional lists� And as the rotational velocity increases� the

boxes change size more rapidly�

Graph � clearly shows the advantages of the static box method� Both the update bound�

ing box time and sort lists time are almost constant as the rotational velocity increases�

All of our tests show that high frame rates can be achieved while performing exact

collision detection in demanding environments� The key is that the collision detection needs

to be applied intelligently� The Sweep and Prune algorithm selectively applies fast� exact

collision detection� and thus results in the high frame rates�

Realistic situations like the kitchen walkthrough often have many fewer moving objects

than our simulations� Nevertheless� our algorithm showed great performance even under ex�

treme conditions� The architectural walkthroughmodels showed no perceptible performance

degradation when collision detection was added �as in Frame 
 to ���

� Conclusion

For a virtual environment� like a walkthrough� to be convincing� it needs to contain objects

that respond realistically to collisions with the user and with the other objects� By mak�

ing use of geometric and temporal coherence� our algorithm detects these collisions more

e�ciently and e�ectively than any algorithms we have known� Under many circumstances

our algorithm produces frames rates over �	 hertz for environments with over a �			 mov�

ing polytopes� Our walkthrough experiments showed no degradation of frame rates when

collision detection was added�

We plan to add to our current system complete penetration detection using internal

Voronoi regions� This should result in better performance for dense environments� where

collisions are more common� In addition� we would like to implement deeper hierarchy to

explore methods of grouping concave polytopes� It should also be interesting to combine

spatial decomposition with the Sweep and and Prune algorithm� Such a hybrid algorithm

might be well�suited for a parallel implementation� We also feel that exploiting geometric

coherence further might yield improved algorithms in the future�

�	



��



��



Graph 1

Number of Polytopes

Se
co

nd
s 

pe
r F

ra
m

e

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 500 1000 1500 2000

Dynamic
Box

Fixed Cube

Graph 3

% Density of Simulation Volume

Se
co

nd
s 

pe
r F

ra
m

e

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.0 2.0 4.0 6.0 8.0 10.0

Graph 4

Rotational Velocity (degrees/frame)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

Graph 2

Number of Faces

0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

0.20

0.23

0 100 200 300 400

��



Graph 6

Rotational Velocity for Fixed Cube

Se
co

nd
s 

pe
r F

ra
m

e

0.00

0.01

0.02

0.03

0.04

0.05

0 3 6 9 1 2 1 5 1 8 2 1 2 4 2 7 3 0 3 3 3 6 3 9 4 2 4 5

Graph 5

Rotational Velocity for Dynamic Box

Se
co

nd
s 

pe
r F

ra
m

e

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0 3 6 9 1 2 1 5 1 8 2 1 2 4 2 7 3 0 3 3 3 6 3 9 4 2 4 5

Collision Tests

Sort Lists

Update Boxes

��



References

ARJ�	� John M� Airey� John H� Rohlf� and Frederick P� Brooks Jr� Towards image

realism with interactive update rates in complex virtual building environments�

ACM SIGGRAPH Special Issue on ���� Symposium on Interactive �D Graph�

ics� ��������!
	� ���	�

AS�	� P� K� Agarwal and M� Sharir� Red�blue intersection detection algorithms� with

applications to motion planning and collision detection� SIAM J� Comput��

������!���� ���	�

BV��� W� Bouma and G� Vanecek� Jr� Collision Detection and Analysis in Physically

Based Simulations Proceedings of the Eurographics Workshop on Animation

and Simulation Vienna Austria� pp� �����	�� September� �����

ASF��� A� Garcia�Alonso� N� Serrano� and J� Navarre Solving the Collision Detection

Problem IEEE Computer Graphics and Applications� pp� ������ May� �����

Bar�	� D� Bara�� Curved surfaces and coherence for non�penetrating rigid body simu�

lation� ACM Computer Graphics� ��������!��� ���	�

BB��� R� Barzel and A� Barr� A modeling system based on dynamic constraints� ACM

Computer Graphics� ��������!��� �����

BF��� J� L� Bentley and J� H� Friedman� Data structures for range searching� Com�

puting Surveys� ������ December �����

Cam�	� S� A� Cameron� Collision detection by four�dimensional intersection testing�

IEEE Trans� on Robotics and Automation� ��������!�	�� ���	�

Can��� J� F� Canny� Collision detection for moving polyhedra� IEEE Trans� PAMI�

��pp� �		!�	�� �����

CD��� B� Chazelle and D� P� Dobkin� Intersection of convex objects in two and three

dimensions� J� ACM� ����!��� �����

Cha��� B� Chazelle� An optimal algorithm for intersecting three�dimensional convex

polyhedra� In Proc� ��th Annu� IEEE Sympos� Found� Comput� Sci�� pages


��!
��� �����

DK�	� D� P� Dobkin and D� G� Kirkpatrick� Determining the separation of preprocessed

polyhedra ! a uni�ed approach� In Proc� �	th Internat� Colloq� Automata Lang�

Program�� volume ��� of Lecture Notes in Computer Science� pages �		!����

Springer�Verlag� ���	�

Duf��� Tom Du�� Interval arithmetic and recursive subdivision for implicit functions

and constructive solid geometry� ACM Computer Graphics� ���������!���� �����

�




DZ��� P� Dworkin and D� Zeltzer� A new model for e�cient dynamics simulation�

Proceedings of the Fourth Eurographics Workshop on Animation and Simulation�

�����

Ede��� H� Edelsbrunner� A new approach to rectangle intersections� Part I� Internat�

J� Comput� Math�� ����	�!���� �����

ETHA��� M� Edahiro� K� Tanaka� R� Hoshino� and Ta� Asano� A bucketing algorithm for

the orthogonal segment intersection search problem and its practical e�ciency�

In Proc� �rd Annu� ACM Sympos� Comput� Geom�� pages �
�!���� �����

GJK��� E� G� Gilbert� D� W� Johnson� and S� S� Keerthi� A fast procedure for computing

the distance between objects in three�dimensional space� IEEE J� Robotics and

Automation� vol RA���pp� ���!�	�� �����

Hah��� J� K� Hahn� Realistic animation of rigid bodies� Computer Graphics� ������pp�

���!�	�� �����

HBZ�	� B� V� Herzen� A� H� Barr� and H� R� Zatz� Geometric collisions for time�

dependent parametric surfaces� Computer Graphics� ��������!��� ���	�

Hof��� C�M� Ho�mann� Geometric and Solid Modeling� Morgan Kaufmann� San Mateo�

California� �����

HSS��� J�E� Hopcroft� J�T� Schwartz� and M� Sharir� E�cient detection of intersections

among spheres� The International Journal of Robotics Research� �������!�	�

�����

Hub��� P� M� Hubbard� Interactive collision detection� In Proceedings of IEEE Sympo�

sium on Research Frontiers in Virtual Reality� October �����

KWBB��� Kass� Witkin� Bara�� and Barr� An introduction to physically based modeling�

Course Notes �	� �����

Lat��� J�C� Latombe� Robot Motion Planning� Kluwer Academic Publishers� �����

LC��� M�C� Lin and John F� Canny� E�cient collision detection for animation� In

Proceedings of the Third Eurographics Workshop on Animation and Simulation�

����� Cambridge� England�

Lev��� C� Leventhal� Molecular model�building by computer� Scienti
c American�

������� June �����

Lin��� M� C� Lin� E�cient Collision Detection for Animation and Robotics� PhD thesis�

University of California at Berkeley� December ����� Department of Electrical

Engineering and Computer Science�

��



LM��� M�C� Lin and Dinesh Manocha� Interference detection between curved objects

for computer animation� In Models and Techniques in Computer Animation�

pages ��!
�� Springer�Verlag� �����

LPW��� T� Lozano�P"erez and M� Wesley� An algorithm for planning collision�free paths

among polyhedral obstacles� Comm� ACM� ����	��pp� 
�	!
�	� �����

Meg��� N� Megiddo� Linear�time algorithms for linear programming in r� and related

problems� SIAM J� Computing� ���pp� �
�!���� �����

MW��� M� Moore and J� Wilhelms� Collision detection and response for computer

animation� Computer Graphics� ���������!���� �����

Ove��� M� H� Overmars� Point location in fat subdivisions� Inform� Proc� Lett�� ������!

��
� �����

Pen�	� A� Pentland� Computational complexity versus simulated environment� Com�

puter Graphics� ��������
!���� ���	�

PS�
� F�P� Preparata and M� I� Shamos� Computational Geometry� Springer�Verlag�

New York� ���
�

PW�	� A� Pentland and J� Williams� Good vibrations� Modal dynamics for graphics

and animation� Computer Graphics� ��������
!���� ���	�

SML�	� A� Schmitt� H�M� Mu#uller� and W� Leister Ray tracing algorithms� theory and

practice Theoretical Foundations of Computer Graphics and CAD vol� F�	�

pages �����	�	� Springer�Verlag �����

Sei�	� R� Seidel� Linear programming and convex hulls made easy� In Proc� �th Ann�

ACM Conf� on Computational Geometry� pages ���!��
� Berkeley� California�

���	�

SH��� M� I� Shamos and D� Hoey� Geometric intersection problems� In Proc� �	th

Annu� IEEE Sympos� Found� Comput� Sci�� pages �	�!��
� �����

Sha��� M� Sharir� E�cient algorithms for planning purely translational collision�free

motion in two and three dimensions� In Proc� IEEE Internat� Conf� Robot�

Autom�� pages ����!����� �����

SW��� H� W� Six and D� Wood� Counting and reporting intersections of d�ranges�

IEEE Trans� on Computers� C����No� ��� March �����

SWF���� J� Snyder� A� Woodbury� K� Fleischer� B� Currin� and A� Bar� Interval methods

for multi�point collisions between time dependent curved surfaces� In Proceed�

ings of ACM Siggraph� pages ���!���� �����

��



TN��� W� Thibault and B� Naylor� Set operations on polyhedra using binary space

partitioning trees� ACM Computer Graphics� ���� �����

Tur��� G� Turk� Interactive collision detection for molecular graphics� Master�s thesis�

Computer Science Department� University of North Carolina at Chapel Hill�

�����

Zel��� D� Zeltzer� Autonomy� interaction and presence� Presence� ��������� �����

��


