
Hierarchical Back�Face Culling�

Subodh Kumar Dinesh Manocha Bill Garrett Ming Lin

Department of Computer Science

University of North Carolina

Chapel Hill NC �����

USA

fkumar�manocha�garrett�ling�cs�unc�edu

Abstract

We present a sub�linear algorithm for computing and culling back�facing polygons that yields
a signi�cant performance improvement in the interactive rendering of large polygonal models�
The algorithm partitions a polygonal model it into hierarchical clusters based on the normals
and positions of the polygons� It does not explicitly compute all the back�facing polygons
but rather decides� in expected constant time� whether an entire cluster is back�facing� As
a pre�processing step� the algorithm partitions the space into regions with respect to each
cluster� During rendering� it exploits frame�to�frame coherence to track the view�point� The
algorithm has been applied to a number of models and its performance is a function of number
of clusters� the depth of the hierarchies� and the characteristics of the graphics system� In
practice� we are able to cull �� � ��	 of the polygons in about � �
�	 of the total CPU
time per frame on an SGI Indigo� Extreme for models composed of tens of thousands of
polygons� It improves the overall frame rate by �����	 as compared to hardware back�face
culling�

CR Categories and Subject Descriptors� I���� �ComputerGraphics�� PictureImage
Generation � Display algorithms� I���� �Computer Graphics�� Computational Geometry
and Object Modeling� Rendering�

� Introduction

Given a polygonal model with well�de�ned normals� all the polygons whose normals point
away from the view�point are called back�facing� If these polygons are part of solid polyhedra�

�Supported in part by ARPA ISTO Order No� A���� NSF Grant No� MIP��	�
���� an Alfred P� Sloan
Foundation Fellowship� ARO Contract P�	�����MA� NSF Grant CCR��	����� ONR Contract N���������
���� 	�� ARPA Contract DABT
	��	�C����� and NSF�ARPA Center for Computer Graphics and Scienti�c
Visualization�

they can be eliminated from the rendering process� This technique is known as back�face

culling and is widely used to improve the frame rate� Many graphics systems implement
it in hardware� On average� approximately one�half of the polygons of a polyhedron are
back�facing� If the polygons are not part of a polyhedron or if the polyhedra have missing
or clipped faces� back�facing polygons can be treated specially� If culling is not desired� the
simplest approach is to �ip the normal and treat the polygon as front�facing ���� The simplest
algorithms for back�face culling are based on computing the dot product of the polygon
normal with a vector from the view�point to any point on the polygon� The complexity of
these standard algorithms is linear in the number of polygons�

Main Contribution � We present a simple and sub�linear algorithm for hierarchical
back�face culling� The algorithm has three main components�
Cluster Formation� The input polygonal model is partitioned into clusters based on the
normals and physical proximity of the polygons� The cluster size is chosen as a function of
the performance of the graphics system so as to optimize the overall performance� Large
clusters are represented hierarchically�
Spatial Partition� The space is partitioned into BackRegion�FrontRegionandMixedRegion

with respect to each cluster� These Regions are de�ned such that all the polygons in the
cluster are back�facing or front�facing if the view�point is in the BackRegionor FrontRegion�
respectively� Each Region is further decomposed into convex Query cells� each de�ned by
three bounding planes�
View�point Tracking� At each frame the algorithm determines whether the view�point is
in the FrontRegion� BackRegion or MixedRegion for each cluster� It starts with the
Query cell�s� containing the view�point at the previous frame and incrementally computes
the new Query cell�s� in expected constant time� If the view�point is in the MixedRegion�
the algorithm is applied recursively to each child of the current cluster�

The space requirement of the algorithm is linear in the number of polygons� with a rela�
tively small constant� Its overall performance is a function of number of clusters� the height
of the trees and� and the motion of the view�point between successive frames� Performance
is nearly independent of the number of polygons in a cluster� We have implemented and
measured the algorithm�s performance on di�erent graphics platforms �SGI Indigo and Re�
ality Engine systems� and on various models composed of tens of thousands of polygons� In
practice� it improves the overall frame rate by ��� ��	 as compared to hardware back�face
culling�

The rest of the paper is organized in the following manner� We survey the related work
on visibility� polygon clustering� and use of coherence in Section �� We introduce some
terminology and give an overview of the algorithm in Section �� In Section � we present
the algorithm for computing the clusters and their hierarchical representation� Section �
covers our spatial partitioning method� We describe the algorithms for tracking the view�
point in Section � and its extension to dynamic environments in Section �� We discuss
implementation and performance on di�erent platforms and models in Section ��

�

� Previous Work

There is a considerable volume of literature on hidden surface computation� polygon clus�
ters� visibility computations� temporal coherence and on�line culling� In the early days of
image synthesis a central geometric problem was visible surface computation� A number of
algorithms have been proposed based on spatial partitioning� hierarchical representations�
Z�bu�er� list�priority� scan�line� area�subdivision and polygon clusters ���
��� It is still an
active area of research in computational geometry� where many theoretically e�cient algo�
rithms have been proposed ���� For models composed of tens of thousands of polygons� only
Z�bu�er approaches are able to give interactive performance on current graphics systems�
Many non�interactive applications use binary space�partitioning �BSP� trees ��� to improve
the rendering time of large static environments�

There is also signi�cant amount of literature on the use of polygon clusters in visibility
computations� Schumaker had earlier proposed them in �
�� and Newell had used them
as well �

�� The BSP tree algorithm is also based on the fact that environments can be
viewed as being composed of clusters� Finally� coherence has been a key characterization of
most visibility algorithms� In the classic paper� Sutherland et� al� had shown how visibility
algorithms can take advantage of coherence and more than eight di�erent kind of coherence
were identi�ed �
���

Rendering an extremely complex geometric database composed of millions of polygons
has always been a challenge for visibility computations� To handle such large data�sets� three
kind of visibility approaches have been used along with Z�bu�er�

View�Frustum Culling� The technique of view�frustum culling uses spatial data struc�
tures like oct�trees and hierarchical traversals of such structures to cull out portions of the
model not lying in the current view volume ��� ���

Obscuration Culling� These techniques are used on scenes with high depth complexity
and are based on hidden�surface removal methods and occlusion culling ���� These include
techniques based on partitioning the model into cells and portals and computing the partial
visibility set �PVS� of polygons from each cell �
�
�� ���� They have been successfully applied
to architectural models and used to speed�up global visibility algorithms for illumination
computation� A hierarchical Z�bu�er algorithm combining spatial and temporal coherence
with hierarchical structures has been presented in ���� It cleverly exploits di�erent types
of coherence and can achieve several orders of magnitudes of acceleration compared with
traditional techniques�

Back�face Culling� Back�face culling is a particular form of occlusion culling used on
solid models that can be easily combinedwith other visibility culling methods� It has recently
been extended to spline patches by computing a bound on the normals and Gauss map of
a patch �
��
��� The current implementations� however� take time linear in the number of
polygons� Some techniques have been proposed to speed it up� Tanimoto �
�� proposed a
graph�theoretic approach that incrementally computes the silhouettes of a convex polytope
using frame�to�frame coherence� It is di�cult to extend it to general non�convex polytope
models� though� The silhouettes of such models can have multiple components and the
number of components vary from di�erent view�point�

Other methods for back�face culling with sub�linear performance are based on collating

�

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

�������
�������
�������
�������
�������
�������
�������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

���������
���������
���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

������
������
������
������
������
������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������FrontRegion

MixedRegion

MixedRegion

P1 P2 P3 P4 P5 P6

B1 B2

 F1

 F2
 F3

 F4

f1

f2

f3

 b1

BackRegion

Figure
� Di�erent Regions of a Cluster

global visibility information� which can a priori compute which polygons are visible or back�
facing from all the view�point� This is much more di�cult than determining merely what
is visible from a single view�point as is done in hidden surface removal� The fastest known
algorithms currently used for computing a complete description of the interocclusion due to
a polyhedral object with n vertices can take up to O�n� log n� time ����

� De�nitions and Algorithm Overview

For a polygon� Pi� in R�� let the equation of the plane containing Pi be aix� biy � ciz � di�
It partitions the R� into two half spaces�

H�

i � aix� biy � ciz � di

H�

i � aix� biy � ciz � di

Given the view�point� V � �X�Y�Z�� polygon Pi is back�facing i� V � H�

i or front�facing i�
V � H�

i � In the rest of the paper we use more relevant notation Hb
i for H�

i � and Hf
i for H�

i

We generalize the concept of back�facing polygons for a cluster of polygons� For a cluster
C of polygons� P�� P�� � � � � Pm� we de�ne�

BackRegion� the set of points in the intersection�
Hb

i � Hb
� �Hb

� � � � � Hb
m�

FrontRegion� the set of points in the intersection�
Hf

i � Hf
� �Hf

� � � � � Hf
m�

�

MixedRegion� the set of points which do not belong to either BackRegionor FrontRegion�
R� � BackRegion � FrontRegion� �where � denotes set di�erence�� Note that this spatial
partition is speci�c to a polygon cluster� We illustrate these Regions for a collection of
lines in ��D in Fig�
� Based on these de�nitions� it is clear that if the view�point V lies in
the BackRegion� then all the polygons in the cluster C are back�facing� Similarly� if V lies
in the FrontRegion� all the polygons are front�facing� Finally� if the view�point lies in the
MixedRegion� some of the polygons are back�facing and the others are front�facing�

Our algorithm proceeds by partitioning a polygonal model into clusters� Large clusters
are organized hierarchically as a collection of �sub�clusters� The algorithm pre�computes the
Regions for each cluster� Furthermore� each of these Regions is decomposed into convex
Query cells� with three bounding planes� Given a Query cell� the algorithm can easily
determine whether the view�point is contained in it� At run�time� our algorithm tracks the
view�point with respect to the Regions of each cluster� For a cluster C� if the view�point lies
in its BackRegion �FrontRegion�� respectively� all the polygons belonging to that cluster
are back�facing �front�facing�� Otherwise� some polygons in the cluster are front�facing while
others are back�facing� In this case� the view�point is tracked with respect to the Regions

of subclusters of C� By combining hierarchical clustering� spatial partitioning and temporal
coherence� we are able to rapidly cull away back�facing polygons and achieve signi�cant
improvement in visible surface determination for fast rendering�
 ��� ��

�a� Teapot �b� Tracked Sphere

Figure �� Cluster formation

The overall algorithm makes use of a number of concepts and algorithms from computa�
tional geometry� We review them here� More details are given in �
���
Convex Hull� The convex hull of a set of points is the smallest convex set containing those
points� A number of algorithms are known in the literature to compute the algorithms in
��D and ��D �
��� In our application� we use the Quickhull algorithm for computing convex
hulls ���� Its robust implementation is available as part of the Qhull public domain package�
Linear Programming� Geometrically� linear programming amounts to the following� given
a set H of half�spaces and a vector W� compute a vertex v� in the common intersection of

�

half�spaces� that minimizes v �W� If this common intersection is null or unbounded� no such
vertex exists� To solve a linear programming problem� we use the randomized algorithm
presented in �
��� A public domain implementation of this algorithm is available�
Duality� Duality is powerful concept and used in a number of geometric algorithms �
��� In
R�� the dual of a plane P � ax� by� cz �
 is the point P � �a� b� c�� and vice�versa� �The
dual of a line is a line�� Note that this normalized form of plane equation assumes that the
plane does not pass through the origin� To handle this problem� the coordinate system is
transformed� so that the new origin does not lie on the plane� i�e� we move the origin O� to
a new point O� The dual is said to be taken about the point O� In our application� we are
interested in the the following property of duality� The dual of the intersection of half spaces
fHig� is the convex hull of fdual�Hi�g� Faces� edges and points on the dual hull correspond
to points� edges and faces� respectively� on the boundary of the intersection of half spaces
fHig�

� Cluster Formation

Given a model with N polygons� decomposing the model into clusters is an essential
component of our algorithm� The choice of polygons in a particular cluster is governed
by following constraints� How many cluster shall we partition the model into� Given the
number of clusters� how shall we distribute the polygons amongst di�erent clusters� We
address the �rst question in Section ��� and present an algorithm to compute the number
of clusters to maximize the overall performance� Given the number �Q�� we decompose the
polygonal model into various clusters based on the following constraints�

� Physical Proximity� Minimize the physical proximity of the polygons� In other
words� polygons in a cluster should not be far apart from each other� otherwise the
view�point can be located between them�

� Proximity in the Normal Space� Maximize the BackRegion of the cluster by
reducing the variation of orientations of the polygons� This corresponds to minimizing
their proximity in the normal space�

We use duality to minimize the proximity of the polygons in the normal space� Corre�
sponding to each polygon in the primal space� we compute a point in the dual space� If
the equation of the plane containing the polygon is aix � biy � ciz � di� its corresponding
coordinates in the dual space are �ai

di
� bi
di
� ci
di
�� The proximity of the polygons in the normal

space implies that their corresponding dual points are very close to each other in the dual
space �based on the Euclidean distance between two points in the dual space�� Thus� a
simple algorithm for computing the clusters is based on computing the duals of all the poly�
gons partitioning them into Q groups in the dual space such that all the points belonging
to a group are close! to each other� Such groups can be computed based on decomposing
the dual space into grids� classifying the dual points with respect to grids and merging or
splitting the grids as necessary �so as to obtain Q groups�� The dual of the points in each
group is a cluster in the primal space�

However� duality transformation and Euclidean distances in the dual space are not suf�
�cient to satisfy both the constraints listed above� First� the dual points are not de�ned for

�

 ��

�a� Bunny ���� clusters� �b� PLB ���� clusters�

�c� PLB ���� clusters� �d� PLB ����� clusters�

Figure �� Clusters for the bunny and the PLB model

�

polygons� whose plane equation contains the origin� Second� polygons at distance l from the
origin in the primal space get mapped to points at distance
�l in the dual space�

To circumvent these problems� we use a di�erent metric in the dual space to compute
distances between points� Given two points� A � �x�� y�� z�� and B � �x�� y�� z��� the
distance between them is de�ned as�

D�A�B� �

������

q

x�� � y�� � z��
�
q

x�� � y�� � z��

������ � �
�

The resulting algorithm partitions the points in the dual space in di�erent grids based on
this metric� All the points in the same grid are merged into a cluster� Di�erent grids are
merged� so that we obtain Q clusters eventually� For the polygons whose plane equations
pass through the origin� we associate them with the cluster which has the average normal
closest to it �in terms of taking the dot products of the normalized vectors corresponding to
the average normal and the polygon normal��

The resulting algorithm has been implemented and applied to various models� In Fig� ��
we demonstrate its performance to polygonal models of the teapot and sphere and in Fig� �
to a bunny and the PLB model �recommended as a benchmark model by the Graphics
Performance Committee�� Each cluster corresponds to a di�erent color on the model� In
particular� it shows �� clusters of the teapot in Fig� ��a��
�� clusters of a sphere in Fig� ��
��� clusters of the bunny in Fig� ��a�� and ��� clusters of the PLB model in Fig� ��b��

��� Hierarchical Representation

Given a �xed number for clusters� the average number of polygons per cluster is high for
large models� In such cases� the algorithm is not able to cull out most of the back�facing
polygons� Increasing the number of clusters alleviates that problem� but the performance of
the tracking algorithm is a linear function of the number of clusters� To circumvent these
problems� we represent large clusters hierarchically�

Each cluster is decomposed into four or eight sub�clusters by subdividing the grids in the
dual space based on the distance metric highlighted in �
�� Each sub�cluster is decomposed
recursively until the number of polygon is less than a user�speci�ed threshold� In our imple�
mentations� we set the threshold to ��� Di�erent hierarchical representations for a cluster
are shown in Fig� �� Given a cluster C� its sub�clusters correspond to A and B in Fig� ��b��
The BackRegion of C is RC � The BackRegion of each sub�cluster is a proper superset of
the BackRegion of the original cluster� as RA � RB � RC � The sub�clusters corresponding
to the �rst and second levels of the PLB model are shown in Fig� ��c� and Fig� ��d�� They
correspond to ��� and ���� clusters� respectively�

� Spatial Partition

Given a cluster� C� of polygons� P�� P�� � � � � Pm� we present algorithms for computing the
Regions of this cluster and decomposing them into Query cells�

�

Cluster A
Sub-cluster CConstraint planes
Sub-cluster B

a. One level of clustering b. Next level of clustering

RA RA = RB � RC

RCRB

Figure �� Hierarchical representation of Clusters

��� Regions Computation

The BackRegion of a cluster is an open convex set consisting of boundary planes� and
de�ned as the intersection of HBi�s� We need to compute�

� the boundary set hb of planes that lie on BackRegion�

� lb� the lines of intersection between adjacent boundary planes�

� pb� the points of intersection between adjacent boundary planes�

These are computed from the dual convex hull of Hb�

Algorithm I

� Compute a point O � BackRegion �see Algorithm II��

�� Compute the dual point of each plane about O� Find convex hull of these points�

�� The points on the hull correspond to hb� Since BackRegion is an open set� not all
faces of the hull correspond to a point in pb� Only the faces whose normals point away
from origin are valid� lb corresponds to the edges of the hull between valid faces�

Next� we show how to compute the point O�

��� Feasible Point Computation

To compute the point O� we use linear programming� We can choose any minimization
vector W� and use the resulting vertex v� However� for any random choice of W� linear
programming may return an unbounded solution� We present a simple algorithm� which
computes a bounded point O inside the feasible region�

Algorithm II

� Choose a small � � � and modify each half�space Hb
i to� Hb

i � aix� biy� ciz � �di� ���

It follows that Hb
i � Hb

i �

�

�� Choose any polygon Pj of the cluster with the plane equation� ajx � bjy � cjz � dj�
and set W � ��aj��bj��cj��

�� Set O � v� the vertex returned by the linear programming routine�

Based on our construction� it is clear that O is a vertex in BackRegion � at least a distance
of � away from its boundary�

��� FrontRegion and MixedRegion Computation

The algorithm for FrontRegion computation is essentially the same as that for BackRegion�
The FrontRegion corresponds to the intersection of Hf

i �s as opposed to Hb
i �s� We do not

compute the MixedRegion explicitly� It is implicit in R��BackRegion�FrontRegion�

��� Decomposing into Query Cells

Given an arbitrary location of the view�pointV� a simple algorithm for point location initially
tests each bounding plane for containment in the BackRegion� If the result is negative� it
checks if the point is in FrontRegion� Both BackRegion and FrontRegion for a cluster
are represented by the planes on their respective boundaries� As a result� any point location
query can take time proportional to the number of bounding planes� which is O�m�� m being
the number of polygons in the cluster� In computational geometry literature� algorithms with
logarithmic asymptotic complexity are known for point location in convex sets ���� However�
their space requirements and constant factors are rather high�

In this section� we present a simple algorithm to decompose BackRegion�FrontRegion

and MixedRegion into Query cells� Each Query cell is a convex regions bounded by three

planes� As a result� a point�location query in such cells can be answered in constant time�
The tracking algorithm presented in Section � uses these cells along with temporal coherence
to check which of the three Region contains the view�point� We present the decomposition
algorithm for BackRegion� the same formulation applies to FrontRegion� Our algorithm
computes a center�point in BackRegion� Planes passing through this center�point and the
boundary lines of BackRegionpartition it into disjoint cells� It is easier to understand this
partitioning in ��D� Fig� � shows one such partitioning� The lightly shaded region shows the
BackRegion of a cluster� CB is the center�point� For each edge Bj � bibj on the boundary
of BackRegion� the query cell BQj is the open cone with CB as its apex� These cells have
the following property� if the view�point lies in BQj� it is su�cient to test against the line
Bj to determine if the view�point is in fact in BackRegion� Now we present the algorithm
in ��D�

Algorithm III

� Compute the boundary of BackRegion� as outlined in Algorithm I�

�� Compute a center point CB � BackRegion� The arithmetic mean of boundary points
is a good center point�

�

�� Each face on the boundary of BackRegionis de�ned by a sequence of edges� �This
sequence is closed for polygons that have adjacent boundary planes on all their edges��
We triangulate the polygonal region� so that each face is bounded by three edges� Call
the set of these triangular regions� BT�

�� For each BTi we construct three side�planes� each including an edge of BTi� and the
point CB� Thus corresponding to each face BTi we get an open tetrahedral Query
cell� BQi with CB as its apex� If the view�point lies in a cell BQi� the plane of face
BTi determines containment in BackRegion�

�� Each edge on the boundary of BackRegion is shared by two facets� Hence each side�
plane of a facet is shared by two Query cells� We use this adjacency information to
maintain neighbor list for each Query cell� This is used to "walk� to the appropriate
cell when the view�point moves out of a given Query cell �as explained in section ���

�� In addition to these cells� we add a truncated cone� that encloses the center�point� It
is used to reduce the number of traversal steps �as discussed in section ���

The algorithm similarly computes a decomposition of space into Query cells FQ�

js based
on the boundary of FrontRegion� It follows from construction that the two decompositions
can overlap in MixedRegion� The algorithm keeps track of the overlaps amongst these
query cells by storing the following information�

� We are given the boundary triangles of BackRegion�BT�

is� and those of FrontRegion

FT�

is� For each BTi maintain pointers to all the FrontRegionQuery cells FQ�

js� it
overlaps� If there are more than three such j�s� subdivide BTi into smaller triangles
such that the set associated with each sub�triangle has at most three cells�

� Repeat the process for FTi on the boundary of FrontRegion � storing their overlaps
with BQ�

js�

� View�point Tracking

At run�time� the algorithm uses the pre�computed cluster descriptions to locate the view�
point in the corresponding Region for each cluster� In particular� it keeps track of the
Query cell�s� containing the view�point in the previous frame� If the view�point is contained
in BackRegion or FrontRegion� it is a unique Query cell� On the other hand� if the
view�point lies in MixedRegion � the algorithm stores a pair of Query cells of the form
�BQi�FQj�� At the current frame� the algorithm tests whether the view�point lies in the
same cell�s�� Each test involves testing the position of the view�point with respect to each
bounding plane� If the view�point fails a bounding plane test� the algorithm walks to the
neighboring cell adjoining that plane� as shown in Fig� � �red cell is the tracked cell�� This
walk is repeated until the algorithm �nds the cell containing the view�point� If the resulting
cell lies in the MixedRegion� the algorithm is applied recursively to each child of that
cluster� Some extra processing is involved whenever the algorithm moves from BackRegion

or FrontRegion to MixedRegion �or vice�versa�� The running time of the algorithm is

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������������
������������
������������
������������
������������
������������
������������
������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������������
������������
������������
������������
������������
������������
������������

BackRegion

Query Cell

 BQ1

 BQ4
Vf

Vi B1

B2

B3
B4

B5

 b1

 b2 b3

 b4

����������

��
��
��
��
��
��
��
��
��
��CB

Figure �� Tracking inside the Query Cells

a function of the number of cells traversed at that frame� Due to coherence� this number is
typically a small constant�

In the �rst frame� the algorithm starts with a cell at random� Even in this case the
expected number of cells traversed in an cluster with m equi�sized cells� is O�

p
m�� if the

cells uniformly partition the space� This is because the average length of the shortest path
from one cell to the other is O�

p
m��

��� Reducing Traversals

Given that the performance for each cluster at every frame is determined by number of cells
traversed� the algorithm minimizes the number of traversals� When the view�point fails the
containment test for the current Query cell� it walks to a neighboring cell� If the view�point
motion is small� for most cases the algorithm traverses only a few cells� But consider the case�
when the view�point is very close to the center point CB for the BackRegion �as computed
in Algorithm III�� shown in Fig� �� The initial position of the view�point is shown as Vi in the
cell BQ� �corresponding to the previous frame� and the �nal position is Vf �corresponding
to the current frame� in the cell BQ�� The traversal algorithm can visit O�m� cells for a
cluster with m Query cells for a small motion� To circumvent such problems� the algorithm
constructs a maximal inscribed cone inside the BackRegion� around the center�point CB
�as shown in Fig� ��� �A similar inscribed cone is constructed for the FrontRegion��

If the view�point was in BackRegion in the previous frame� the algorithm �rst tests
whether the new location of the view�point is inside the inscribed cone of BackRegion�
Only if this test fails� does the algorithm start traversing the Query cells� As a result�
whenever the view�point is close to CB� the algorithm can trivially decide it is contained

�

Figure �� View�point Tracking

inside the BackRegion� A similar procedure is used if the view�point was in FrontRegion

at the previous frame�

��� Traversing In and Out of MixedRegion

When the view�point moves intoMixedRegion �from BackRegion or FrontRegion�� the
algorithm keeps track of two Query cells containing the view�point �of the BQi and FQj��
Assume that the view�point was in BackRegion at the previous frame and moves to the
MixedRegion in the current frame� The traversal algorithm walks to a cell BQi� Let
the bounding polygon of BQi correspond to BTi� BTi has associated with it� the FQ�s it
overlaps� The algorithm starts with one of those cells� and tracks the view�point down to
the appropriate FQj� The algorithm similar when the view�point moves from FrontRegion

to MixedRegion�
When the view�point moves into BackRegion �FrontRegion� from MixedRegion�

the algorithm stops tracking the query cell from FrontRegion�BackRegion��

	 Extension to Dynamic Environments

The algorithms for partitioning space and tracking the view�point described in the previous
sections assume that the models are static and that only the view�point is changing between
frames� In dynamic environments� however� some of the models may undergo motion �rota�
tion or translation�� Recomputing the clusters and space partitions is relatively expensive
for interactive performance� instead� the culling algorithm is modi�ed to take into account
the motion transformations�

�

Whenever a polygon cluster undergoes a rigid transformation� T � the three Regions

and the associated Query cells undergo the same transformation� The algorithm stores T
and applies the inverse transformation to the view�point before tracking it with respect to
the cluster� This assumes� of course� that all the polygons in a cluster undergo the same
transformation� If only a subset of polygons are transformed� this technique doesn�t work
and the algorithm must re�compute the Regions and the Query cells�

 Implementation and Performance

We have implemented the algorithms presented in this paper and tested them on a number of
models using di�erent graphics systems� The memory requirements of the algorithm is linear
in number of polygons� The routines corresponding to cluster formation and space partition
have not been optimized for performance� The performance of the run�time tracking routine
varies considerably with the representation of data structures and memory organization�
Our current implementation is not optimized for memory use� and we expect to improve the
overall performance by
� �
�	 by optimizing� We plan to release our code as a public

domain library in the near future�

	�� Geometric Robustness

We used public domain packages for convex hull computation and linear programming� These
packages are reasonably robust and perform well for most inputs� They occasionally fail�
however� because of precision problesm and certain degenerate inputs� We apply a small
random perturbation of the input set �the vertices of the polygons� to overcome such problems
for convex hull computations� It works well in practice�

Moreover� the minima of the linear programming problem in Algorithm II �step ��� is not
unique and corresponds to any point on the bounding plane ajx�bjY �cjz � dj� Because of
�oating point precision problems� the linear programming algorithm may fail to compute a
minima� To solve this problem� we perturb the minimization vector in the direction opposite
to the expected minima� Since we do not #a priori know the direction� the pre�processing
algorithm searches for the right directions by perturbing each of x� y� and z� in both positive
and negative directions�

In addition� the value of � used in algorithm II is important� If it is too small� the
point O would be close to the boundary of the BackRegion� potentially causing the Qhull
algorithm to fail� On the other hand� a large � can cause the intersection set �of the modi�ed
half�space� to become an empty set� Our algorithm again searches for a right value� using a
bisection scheme�

Another problem that arises due to �oating point precision is cycling between Query
cells� If the view�point is very close to the boundary of a cell� the point location algorithm
may not be able to compute the orientation of a point with respect to a plane accurately� As
a result� the algorithm may walk back to a cell it had already visited� This can result in an
in�nite cycle� We avoid such cycles� by introducing visit�counters for each cell and plane and
update their values to correspond to the global frame number� A plane with its visit�counter

�

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250
Cluster Size

Regions Traversed per Frame # Polygons
Regions

Figure �� Number of Query Cells vs� Cluster Size

equal to the current frame number is not tested for point location again� In such cases� the
algorithm assumes that the view�point is on the correct side�

	�� Performance of the Tracking Algorithm

The running time of the tracking algorithm is primarily a function of the motion of the view�
point between successive frames� It also depends inversely on the volume of the Query cells
and sub�linearly on the size of the clusters� In Fig� �� we highlight the average number of
Query cells traversed at each frame as a function of the cluster size� The X�axis corresponds
to the cluster size and the Y �axis is the average number of Query cells traversed� These
data were generated on an SGI Indigo � Extreme �with a ���MHz R���� processor� using
di�erent clusters of the PLB model �as demonstrated in the video��

In Fig� �� we measure the performance of tracking algorithm as a function of the view�
point motion �on a ���MHz R������ These data was generated using the sphere model� in
which each cluster has same number of polygons� The sphere is rotated about a �xed axis in
space and theX�axis corresponds to the angle of rotation� The Y �axis is the average tracking
time in microseconds� As the angle increases� the tracking time increases only sub�linearly�
A very large value of rotation ��
���� corresponds to the case of the view�point oscillating
between BackRegion and FrontRegion in successive frames �from one end of the space
to the other end�� it corresponds to the worst case behavior for the tracking algorithm�

	�� Number of Clusters

The performance of the culling algorithm is primarily determined by the number of clusters
and is nearly independent of cluster size� Given an input model with N polygons� our goal
is to divide it into Q clusters such that the overall performance is maximized� The choice of
Q is governed by the following con�icting constraints�

� The running time of the culling algorithm increases linearly as a function of Q�

�

� The average number of polygons per cluster is N�Q� A small value of Q would imply
that fewer polygons are culled or that the view�point is in the MixedRegion of more
clusters� In the latter case� the tracking algorithm is applied recursively to each sub�
cluster� which increases the overall running time�

The optimum choice of Q is also a function of the graphics system� This includes the
polygon rendering performance as well as the CPU performance� If polygon rendering is
the bottleneck� the clustering algorithm can use a large value of Q� The extreme case is
Q � N � In this case� the algorithm tests each polygon explicitly� to determine whether it is
back�facing� This would also result in the maximum number of polygons being culled away�
On the other hand� if the CPU performance is the bottleneck� the algorithm should use a
low value of Q� The other extreme case is Q �
 and this implies no hierarchical back�face
culling� In general� computing an optimum value of Q is non�trivial�

In our implementation� we have used the following heuristic to estimate a good value of
Q� Given a graphics system� the algorithm can easily estimate the average tracking time
per cluster per frame based on simple experiments �e�g� �us � �us on a ��� MHz R������
In many applications� only a small percentage of CPU time may be available for the culling
algorithm� If the cluster size is Q� the algorithm typically tracks about �Q��Q clusters and
sub�clusters at each frame �on an average�� As a result� we try to maximizeQ such that the
total tracking time is not a bottleneck on the CPU� This heuristic works well in practice �as
shown in Table
�

	�� Applications and Speed
Up

In Table
� we have demonstrated the performance of our implementation on di�erent
models and compared it with hardware back�face culling� We used a SGI Indigo�Extreme
���� MHz R���� with
��MB memory� as well as a SGI RealityEngineII ���� MHz R����
with �
� MB memory�� The polygon rendering performance of the latter is about �ve times
better than the former� The graphics pipelines on these systems transform the polygons and
check the normal of every transformed polygon to decide whether it is back�facing�

We computed the average percentage of polygons culled in each frame and the addi�

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140 160 180
Angle (Degree)

Tracking Time (us)

Figure �� Tracking time as a function of �motion�

�

Platform Indigo�� Extreme Graphics Onyx� Reality Engine
Model � Polygons Polygons Frame�Rate Tracking Polygons Frame�Rate Tracking

Culled Improvement Overhead �CPU� Culled Improvement Overhead �CPU�
Sphere ���� �
�� ������ ���
� �
�� ��
��
�
	�
Bunny
��� ����	� ����� ���� ����	� ��
�� ������
PLB ���� 	���� �����
���� 	���� 	��� �	����

Table
� Performance Comparison

tional overhead on the CPU �by the hierarchical back�face culling algorithm� as well as the
improvement in frame rate as compared to the hardware back�face culling algorithm� The
performance varies with the graphics systems and the models� Typically� the algorithm is
able to classify �����	 of the model into front�facing and back�facing polygons� It does does
not render the back�facing polygons� Overall� it improves the frame�rate by �����	 for large
models� For relatively small models �like the sphere with �� ��� polygons�� the algorithm
does not produce much speed�up on high�end graphics systems� The additional overhead
on the CPU of the tracking algorithm �as a percentage of the total frame time� is less than

�	 on average� The algorithm performs extremely well on low�end graphics systems or on
large�scaled complex models� whenever polygon transformation is the bottleneck�

� Conclusion and Future Work

In this paper� we have presented a simple and elegant algorithm for hierarchical back�face
computation� It is a general purpose algorithm applicable to all polygonal models and on
all graphics systems� It can be easily integrated with all applications� whenever polygon
rendering is the bottleneck� It is worth noting that the actual implementation can be further
simpl�ed by computing the regions in the dual space� If the back�face determination is also
done in the dual space� we do not need to explicitly compute the boundary of intersection
the half�space in primal space� The actual performance of the algorithm varies on di�erent
models and is also a function of the graphics systems� We have applied the algorithm to a
number of models and are able to improve the frame rate by �� � ��	 in practice� with an
additional overhead of up to
�	 on the CPU� Future work include e�cient implementation
of parallel graphics systems as well as extension to dynamic models�

�� Acknowledgement

We thank Anselmo Lastra and Steve Molnar for insightful suggestions� Thanks to Greg Turk
and Marc Levoy for the bunny model�

References

�
� J� Airey� J� Rohlf� and F� Brooks� Towards image realism with interactive update rates
in complex virtual building environments� In Symposium on Interactive �D Graphics�
pages �
$���
����

�

��� B� Barber� D� Dobkin� and H� Huhdanpaa� The quickhull algorithm for convex hull�
Technical Report GCG��� The Geometry Center� MN�
����

��� M� Bern� D� Dobkin� D� Eppstein� and R� Grossman� Visibility with a moving point of
view� Algorithmica�

����$���
����

��� J�H� Clark� Hierarchical geometric models for visible surface algorithms� Communica�

tions of the ACM�
��
������$����
����

��� D� P� Dobkin and D� G� Kirkpatrick� Fast detection of polyhedral intersection� In
Proc� �th Internat� Colloq� Automata Lang� Program�� volume
�� of Lecture Notes in

Computer Science� pages
��$
��� Springer�Verlag�
����

��� J� Foley� A� Van Dam� J� Hughes� and S� Feiner� Computer Graphics� Principles and

Practice� Addison Wesley� Reading� Mass��
����

��� H� Fuchs� Z� Kedem� and B� Naylor� On visible surface generation by a priori tree
structures� In Proc� of ACM Siggraph� volume
�� pages
��$
���
����

��� Z� Gigus� J� Canny� and R� Seidel� E�ciently computing and representing aspect graphs
of polyhedral objects� IEEE Transactions on Pattern Analysis and Machine Intelligence�

��������$��
�
��
�

��� N� Greene� M� Kass� and G� Miller� Hierarchical z�bu�er visibility� In Proc� of ACM

Siggraph� pages ��
$����
����

�
�� S� Kumar� D� Manocha� and A� Lastra� Interactive display of large scale nurbs models�
In Proc� of ACM Interactive �D Graphics Conference� pages �
$���
����

�

� M� Newell� R� Newell� and T� Sancha� A new solution to the hidden surface problem�
Proc� ACM Ann� Conf�� pages ���$����
����

�
�� F�P� Preparata and M� I� Shamos� Computational Geometry� Springer�Verlag� New
York�
����

�
�� S� Rubin and T� Whitted� A ��dimensional representation for fast rendering of complex
scenes� In Proc� of ACM Siggraph� pages

�$

��
����

�
�� R� Schumacker� B� Brand� M� Gilliland� and W� Sharp� Study for applying computer�
generated images to visual generation� Technical report� AFHRL�TR������� US Air
Force Human Resources Lab�
����

�
�� R� Seidel� Linear programming and convex hulls made easy� In Proc� �th Ann� ACM

Conf� on Computational Geometry� pages �

$�
�� Berkeley� California�
����

�
�� L�A� Shirman and S�S� Abi�Ezzi� The cone of normals technique for fast processing of
curved patches� In EUROGRAPHICS� pages ��
$����
����

�
�� I� Sutherland� R� Sproull� and R� Schumaker� A characterization of ten hidden�surface
algorithms� Computing Surveys� ��
��
$���
����

�

�
�� S�L� Tanimoto� A graph�theoretic real�time visible surface editing technique� In Proc�

of ACM Siggraph� pages ���$����
����

�
�� S� Teller and P� Hanrahan� Global visibility algorithms for illumination computations�
In Proc� of ACM Siggraph� pages ���$����
����

���� S� J� Teller� Visibility Computations in Densely Occluded Polyheral Environments� PhD
thesis� CS Division� UC Berkeley�
����

�

