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Abstract

We present a sub-linear algorithm for computing and culling back-facing polygons that yields
a significant performance improvement in the interactive rendering of large polygonal models.
The algorithm partitions a polygonal model it into hierarchical clusters based on the normals
and positions of the polygons. It does not explicitly compute all the back-facing polygons
but rather decides, in expected constant time, whether an entire cluster is back-facing. As
a pre-processing step, the algorithm partitions the space into regions with respect to each
cluster. During rendering, it exploits frame-to-frame coherence to track the view-point. The
algorithm has been applied to a number of models and its performance is a function of number
of clusters, the depth of the hierarchies, and the characteristics of the graphics system. In
practice, we are able to cull 30 — 55% of the polygons in about 5 — 10% of the total CPU
time per frame on an SGI Indigo2 Extreme for models composed of tens of thousands of
polygons. It improves the overall frame rate by 30 — 70% as compared to hardware back-face
culling.
CR Categories and Subject Descriptors: [.3.3 [Computer Graphics]: Picture/Image

Generation — Display algorithms; 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling, Rendering.

1 Introduction

Given a polygonal model with well-defined normals, all the polygons whose normals point
away from the view-point are called back-facing. If these polygons are part of solid polyhedra,
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they can be eliminated from the rendering process. This technique is known as back-face
culling and is widely used to improve the frame rate. Many graphics systems implement
it in hardware. On average, approximately one-half of the polygons of a polyhedron are
back-facing. If the polygons are not part of a polyhedron or if the polyhedra have missing
or clipped faces, back-facing polygons can be treated specially. If culling is not desired, the
simplest approach is to flip the normal and treat the polygon as front-facing [6]. The simplest
algorithms for back-face culling are based on computing the dot product of the polygon
normal with a vector from the view-point to any point on the polygon. The complexity of
these standard algorithms is linear in the number of polygons.

Main Contribution : We present a simple and sub-linear algorithm for hierarchical
back-face culling. The algorithm has three main components:

Cluster Formation: The input polygonal model is partitioned into clusters based on the
normals and physical proximity of the polygons. The cluster size is chosen as a function of
the performance of the graphics system so as to optimize the overall performance. Large
clusters are represented hierarchically.

Spatial Partition: The space is partitioned into BackRegion, FrontRegionand MixedRegion
with respect to each cluster. These Regions are defined such that all the polygons in the
cluster are back-facing or front-facing if the view-point is in the BackRegionor Front’Region,
respectively. Each Region is further decomposed into convex Query cells, each defined by
three bounding planes.

View-point Tracking: At each frame the algorithm determines whether the view-point is
in the FrontRegion, BackRegion or MixedRegion for each cluster. It starts with the
Query cell(s) containing the view-point at the previous frame and incrementally computes
the new Query cell(s) in expected constant time. If the view-point is in the MixedRegion,
the algorithm is applied recursively to each child of the current cluster.

The space requirement of the algorithm is linear in the number of polygons, with a rela-
tively small constant. Its overall performance is a function of number of clusters, the height
of the trees and, and the motion of the view-point between successive frames. Performance
is nearly independent of the number of polygons in a cluster. We have implemented and
measured the algorithm’s performance on different graphics platforms (SGI Indigo and Re-
ality Engine systems) and on various models composed of tens of thousands of polygons. In
practice, it improves the overall frame rate by 30 — 70% as compared to hardware back-face
culling.

The rest of the paper is organized in the following manner. We survey the related work
on visibility, polygon clustering, and use of coherence in Section 2. We introduce some
terminology and give an overview of the algorithm in Section 3. In Section 4 we present
the algorithm for computing the clusters and their hierarchical representation. Section 5
covers our spatial partitioning method. We describe the algorithms for tracking the view-
point in Section 6 and its extension to dynamic environments in Section 7. We discuss
implementation and performance on different platforms and models in Section 8.



2 Previous Work

There is a considerable volume of literature on hidden surface computation, polygon clus-
ters, visibility computations, temporal coherence and on-line culling. In the early days of
image synthesis a central geometric problem was visible surface computation. A number of
algorithms have been proposed based on spatial partitioning, hierarchical representations,
Z-buffer, list-priority, scan-line, area-subdivision and polygon clusters [6, 17]. It is still an
active area of research in computational geometry, where many theoretically efficient algo-
rithms have been proposed [3]. For models composed of tens of thousands of polygons, only
Z-buffer approaches are able to give interactive performance on current graphics systems.
Many non-interactive applications use binary space-partitioning (BSP) trees [7] to improve
the rendering time of large static environments.

There is also significant amount of literature on the use of polygon clusters in visibility
computations. Schumaker had earlier proposed them in [14] and Newell had used them
as well [11]. The BSP tree algorithm is also based on the fact that environments can be
viewed as being composed of clusters. Finally, coherence has been a key characterization of
most visibility algorithms. In the classic paper, Sutherland et. al. had shown how visibility
algorithms can take advantage of coherence and more than eight different kind of coherence
were identified [17].

Rendering an extremely complex geometric database composed of millions of polygons
has always been a challenge for visibility computations. To handle such large data-sets, three
kind of visibility approaches have been used along with Z-buffer:

View-Frustum Culling: The technique of view-frustum culling uses spatial data struc-
tures like oct-trees and hierarchical traversals of such structures to cull out portions of the
model not lying in the current view volume [4, 6].

Obscuration Culling: These techniques are used on scenes with high depth complexity
and are based on hidden-surface removal methods and occlusion culling [6]. These include
techniques based on partitioning the model into cells and portals and computing the partial
visibility set (PVS) of polygons from each cell [1, 19, 20]. They have been successfully applied
to architectural models and used to speed-up global visibility algorithms for illumination
computation. A hierarchical Z-buffer algorithm combining spatial and temporal coherence
with hierarchical structures has been presented in [9]. It cleverly exploits different types
of coherence and can achieve several orders of magnitudes of acceleration compared with
traditional techniques.

Back-face Culling: Back-face culling is a particular form of occlusion culling used on
solid models that can be easily combined with other visibility culling methods. It has recently
been extended to spline patches by computing a bound on the normals and Gauss map of
a patch [10, 16]. The current implementations, however, take time linear in the number of
polygons. Some techniques have been proposed to speed it up. Tanimoto [18] proposed a
graph-theoretic approach that incrementally computes the silhouettes of a convex polytope
using frame-to-frame coherence. It is difficult to extend it to general non-convex polytope
models, though. The silhouettes of such models can have multiple components and the
number of components vary from different view-point.

Other methods for back-face culling with sub-linear performance are based on collating
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Figure 1: Different Regions of a Cluster

global visibility information, which can a priori compute which polygons are visible or back-
facing from all the view-point. This is much more difficult than determining merely what
is visible from a single view-point as is done in hidden surface removal. The fastest known
algorithms currently used for computing a complete description of the interocclusion due to
a polyhedral object with n vertices can take up to O(n®logn) time [§].

3 Definitions and Algorithm Overview

For a polygon, P;, in R?, let the equation of the plane containing P; be a;x + by + ¢;z = d;.
It partitions the R? into two half spaces:
H: cae + by +ciz < d;

k3

HE raw + by +ecz > d;

Given the view-point, V = (X, Y, 7), polygon P, is back-facing iff V. € H; or front-facing iff
V € H. In the rest of the paper we use more relevant notation H? for H;, and H! for H;}
We generalize the concept of back-facing polygons for a cluster of polygons. For a cluster
C of polygons, Py, Ps, ..., P, we define:
BackRegion: the set of points in the intersection:
HE=H'NH,N ... HE.
FrontRegion: the set of points in the intersection:

H =HIOHI N H.



MixedRegion: the set of points which do not belong to either BackRegionor FrontRegion:
R*\ BackRegion \ FrontRegion, (where \ denotes set difference). Note that this spatial
partition is specific to a polygon cluster. We illustrate these Regions for a collection of
lines in 2-D in Fig. 1. Based on these definitions, it is clear that if the view-point V lies in
the BackRegion, then all the polygons in the cluster C are back-facing. Similarly, if V lies
in the FrontRegion, all the polygons are front-facing. Finally, if the view-point lies in the
MixedRegion, some of the polygons are back-facing and the others are front-facing.

Our algorithm proceeds by partitioning a polygonal model into clusters. Large clusters
are organized hierarchically as a collection of (sub)clusters. The algorithm pre-computes the
‘Regions for each cluster. Furthermore, each of these Regions is decomposed into convex
Query cells, with three bounding planes. Given a Query cell, the algorithm can easily
determine whether the view-point is contained in it. At run-time, our algorithm tracks the
view-point with respect to the Regions of each cluster. For a cluster C, if the view-point lies
in its BackRegion (FrontRegion), respectively, all the polygons belonging to that cluster
are back-facing (front-facing). Otherwise, some polygons in the cluster are front-facing while
others are back-facing. In this case, the view-point is tracked with respect to the Regions
of subclusters of C. By combining hierarchical clustering, spatial partitioning and temporal
coherence, we are able to rapidly cull away back-facing polygons and achieve significant
improvement in visible surface determination for fast renderin
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Figure 2: Cluster formation

The overall algorithm makes use of a number of concepts and algorithms from computa-
tional geometry. We review them here. More details are given in [12].
Convex Hull: The convex hull of a set of points is the smallest convex set containing those
points. A number of algorithms are known in the literature to compute the algorithms in
2-D and 3-D [12]. In our application, we use the Quickhull algorithm for computing convex
hulls [2]. Its robust implementation is available as part of the Qhull public domain package.
Linear Programming: Geometrically, linear programming amounts to the following: given
a set H of half-spaces and a vector W, compute a vertex v, in the common intersection of



half-spaces, that minimizes v - W. If this common intersection is null or unbounded, no such
vertex exists. To solve a linear programming problem, we use the randomized algorithm
presented in [15]. A public domain implementation of this algorithm is available.

Duality: Duality is powerful concept and used in a number of geometric algorithms [12]. In
R?, the dual of a plane P : ax + by + cz = 1 is the point P : (a,b,c). and vice-versa. (The
dual of a line is a line.) Note that this normalized form of plane equation assumes that the
plane does not pass through the origin. To handle this problem, the coordinate system is
transformed, so that the new origin does not lie on the plane, i.e. we move the origin O’ to
a new point O. The dual is said to be taken about the point O. In our application, we are
interested in the the following property of duality: The dual of the intersection of half spaces
{H;}, is the convex hull of {dual(H;)}. Faces, edges and points on the dual hull correspond
to points, edges and faces, respectively, on the boundary of the intersection of half spaces

{Hi}

4 Cluster Formation

Given a model with N polygons, decomposing the model into clusters is an essential
component of our algorithm. The choice of polygons in a particular cluster is governed
by following constraints: How many cluster shall we partition the model into? Given the
number of clusters, how shall we distribute the polygons amongst different clusters? We
address the first question in Section 8.3 and present an algorithm to compute the number
of clusters to maximize the overall performance. Given the number (@), we decompose the
polygonal model into various clusters based on the following constraints:

e Physical Proximity: Minimize the physical proximity of the polygons. In other
words, polygons in a cluster should not be far apart from each other, otherwise the
view-point can be located between them.

e Proximity in the Normal Space: Maximize the BackRegion of the cluster by
reducing the variation of orientations of the polygons. This corresponds to minimizing
their proximity in the normal space.

We use duality to minimize the proximity of the polygons in the normal space. Corre-
sponding to each polygon in the primal space, we compute a point in the dual space. If
the equation of the plane containing the polygon is a;x 4+ by + ¢;z = d;, its corresponding
coordinates in the dual space are (;—z, S—z, ;—z) The proximity of the polygons in the normal
space implies that their corresponding dual points are very close to each other in the dual
space (based on the Fuclidean distance between two points in the dual space). Thus, a
simple algorithm for computing the clusters is based on computing the duals of all the poly-
gons partitioning them into ) groups in the dual space such that all the points belonging
to a group are “close” to each other. Such groups can be computed based on decomposing
the dual space into grids, classifying the dual points with respect to grids and merging or
splitting the grids as necessary (so as to obtain @) groups). The dual of the points in each
group is a cluster in the primal space.

However, duality transformation and Euclidean distances in the dual space are not suf-
ficient to satisfy both the constraints listed above. First, the dual points are not defined for
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Figure 3: Clusters for the bunny and the PLB model



polygons, whose plane equation contains the origin. Second, polygons at distance [ from the
origin in the primal space get mapped to points at distance 1/ in the dual space.

To circumvent these problems, we use a different metric in the dual space to compute
distances between points. Given two points, A = (71,7,,%z1) and B = (T3,7,,%2), the
distance between them is defined as:

1 1
2 2 2 2 2 2]
\/51/'1‘|‘y1‘|‘21 \/51/'2‘|‘yz‘|‘22

D(A,B) = (1)

The resulting algorithm partitions the points in the dual space in different grids based on
this metric. All the points in the same grid are merged into a cluster. Different grids are
merged, so that we obtain () clusters eventually. For the polygons whose plane equations
pass through the origin, we associate them with the cluster which has the average normal
closest to it (in terms of taking the dot products of the normalized vectors corresponding to
the average normal and the polygon normal).

The resulting algorithm has been implemented and applied to various models. In Fig. 2,
we demonstrate its performance to polygonal models of the teapot and sphere and in Fig. 3
to a bunny and the PLB model (recommended as a benchmark model by the Graphics
Performance Committee). Each cluster corresponds to a different color on the model. In
particular, it shows 48 clusters of the teapot in Fig. 2(a), 128 clusters of a sphere in Fig. 2,
372 clusters of the bunny in Fig. 3(a), and 226 clusters of the PLB model in Fig. 3(b).

4.1 Hierarchical Representation

Given a fixed number for clusters, the average number of polygons per cluster is high for
large models. In such cases, the algorithm is not able to cull out most of the back-facing
polygons. Increasing the number of clusters alleviates that problem, but the performance of
the tracking algorithm is a linear function of the number of clusters. To circumvent these
problems, we represent large clusters hierarchically.

Each cluster is decomposed into four or eight sub-clusters by subdividing the grids in the
dual space based on the distance metric highlighted in (1). Each sub-cluster is decomposed
recursively until the number of polygon is less than a user-specified threshold. In our imple-
mentations, we set the threshold to 20. Different hierarchical representations for a cluster
are shown in Fig. 4. Given a cluster C, its sub-clusters correspond to A and B in Fig. 4(b).
The Back’Region of C is Rc. The BackRegion of each sub-cluster is a proper superset of
the BackRegion of the original cluster, as R4 = Rp N Rc. The sub-clusters corresponding
to the first and second levels of the PLB model are shown in Fig. 3(c) and Fig. 3(d). They
correspond to 904 and 2536 clusters, respectively.

5 Spatial Partition

Given a cluster, C, of polygons, P, P, ..., P,. we present algorithms for computing the
Regions of this cluster and decomposing them into Query cells.
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5.1 Regions Computation

The BackRegion of a cluster is an open convex set consisting of boundary planes, and
defined as the intersection of HB,;’s. We need to compute:

e the boundary set h° of planes that lie on BackRegion.
e [’ the lines of intersection between adjacent boundary planes.
e p°, the points of intersection between adjacent boundary planes.

These are computed from the dual convex hull of H°.

Algorithm 1

1. Compute a point O € BackRegion (see Algorithm II).
2. Compute the dual point of each plane about O. Find convex hull of these points.

3. The points on the hull correspond to h’. Since BackRegion is an open set, not all
faces of the hull correspond to a point in p°. Only the faces whose normals point away
from origin are wvalid. [* corresponds to the edges of the hull between valid faces.

Next, we show how to compute the point O.

5.2 Feasible Point Computation

To compute the point O, we use linear programming. We can choose any minimization
vector W, and use the resulting vertex v. However, for any random choice of W, linear
programming may return an unbounded solution. We present a simple algorithm, which
computes a bounded point O inside the feasible region:

Algorithm I1

1. Choose a small 6 > 0 and modify each half-space 7—[? to: ﬁ caix+ by + ez < (d; —9).
It follows that H} C .



2. Choose any polygon P; of the cluster with the plane equation: a;x + by + ¢jz = d;,
and set W = (—a;, —b;, —¢;).

3. Set O = v, the vertex returned by the linear programming routine.

Based on our construction, it is clear that O is a vertex in BackRegion , at least a distance
of § away from its boundary.

5.3 FrontRegion and MixedRegion Computation

The algorithm for Front’Regioncomputation is essentially the same as that for BackRegion.
The FrontRegion corresponds to the intersection of H{’s as opposed to H%’s. We do not
compute the MixedRegion explicitly. It is implicit in R*\BackRegion\FrontRegion.

5.4 Decomposing into Query Cells

Given an arbitrary location of the view-point V. a simple algorithm for point location initially
tests each bounding plane for containment in the BackRRegion. If the result is negative, it
checks if the point is in FrontRegion. Both BackRegion and FrontRegion for a cluster
are represented by the planes on their respective boundaries. As a result, any point location
query can take time proportional to the number of bounding planes, which is O(m), m being
the number of polygons in the cluster. In computational geometry literature, algorithms with
logarithmic asymptotic complexity are known for point location in convex sets [5]. However,
their space requirements and constant factors are rather high.

In this section, we present a simple algorithm to decompose BackRegion, FrontRegion
and MixedRegion into Query cells. Each Query cell is a convex regions bounded by three
planes. As a result, a point-location query in such cells can be answered in constant time.
The tracking algorithm presented in Section 6 uses these cells along with temporal coherence
to check which of the three Region contains the view-point. We present the decomposition
algorithm for BackRegion, the same formulation applies to FrontRegion. Our algorithm
computes a center-point in BackRegion. Planes passing through this center-point and the
boundary lines of BackRegionpartition it into disjoint cells. It is easier to understand this
partitioning in 2-D. Fig. 5 shows one such partitioning. The lightly shaded region shows the
BackRegionof a cluster. CB is the center-point. For each edge B; = b;b; on the boundary
of Back’Region, the query cell BQ; is the open cone with CB as its apex. These cells have
the following property: if the view-point lies in BQ;, it is sufficient to test against the line
B; to determine if the view-point is in fact in BackRegion. Now we present the algorithm

in 3-D:
Algorithm III
1. Compute the boundary of BackRegion, as outlined in Algorithm I.

2. Compute a center point CB € BackRegion. The arithmetic mean of boundary points
is a good center point.
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3. Each face on the boundary of BackRegionis defined by a sequence of edges. (This
sequence is closed for polygons that have adjacent boundary planes on all their edges.)
We triangulate the polygonal region, so that each face is bounded by three edges. Call
the set of these triangular regions, BT.

4. For each BT; we construct three side-planes, each including an edge of BT;, and the
point CB. Thus corresponding to each face BT; we get an open tetrahedral Query
cell, BQ; with CB as its apex. If the view-point lies in a cell BQ;, the plane of face
BT, determines containment in BackRegion.

5. Fach edge on the boundary of Back’'Region is shared by two facets. Hence each side-
plane of a facet is shared by two Query cells. We use this adjacency information to
maintain neighbor list for each Query cell. This is used to ‘walk’ to the appropriate
cell when the view-point moves out of a given Query cell (as explained in section 6).

6. In addition to these cells, we add a truncated cone, that encloses the center-point. It
is used to reduce the number of traversal steps (as discussed in section 6).

The algorithm similarly computes a decomposition of space into Query cells FQ;S based
on the boundary of Front’Region. It follows from construction that the two decompositions
can overlap in MixedRegion. The algorithm keeps track of the overlaps amongst these
query cells by storing the following information:

e We are given the boundary triangles of BackRegion, BT's, and those of FrontRegion
FT!s. For each BT; maintain pointers to all the FrontRegionQuery cells FQ;S, it
overlaps. If there are more than three such j's, subdivide BT, into smaller triangles
such that the set associated with each sub-triangle has at most three cells.

o Repeat the process for FT; on the boundary of FrontRegion , storing their overlaps
with BQ;S.

6 View-point Tracking

At run-time, the algorithm uses the pre-computed cluster descriptions to locate the view-
point in the corresponding Region for each cluster. In particular, it keeps track of the
Query cell(s) containing the view-point in the previous frame. If the view-point is contained
in BackRegion or FrontRegion, it is a unique Query cell. On the other hand, if the
view-point lies in MixedRegion , the algorithm stores a pair of Query cells of the form
(BQ;,FQ;). At the current frame, the algorithm tests whether the view-point lies in the
same cell(s). Each test involves testing the position of the view-point with respect to each
bounding plane. If the view-point fails a bounding plane test, the algorithm walks to the
neighboring cell adjoining that plane, as shown in Fig. 6 (red cell is the tracked cell). This
walk is repeated until the algorithm finds the cell containing the view-point. If the resulting
cell lies in the MixedRegion, the algorithm is applied recursively to each child of that
cluster. Some extra processing is involved whenever the algorithm moves from BackRegion
or FrontRegion to MixedRegion (or vice-versa). The running time of the algorithm is

11
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Figure 5: Tracking inside the Query Cells
a function of the number of cells traversed at that frame. Due to coherence, this number is
typically a small constant.
In the first frame, the algorithm starts with a cell at random. Even in this case the
expected number of cells traversed in an cluster with m equi-sized cells, is O(y/m), if the
cells uniformly partition the space. This is because the average length of the shortest path

from one cell to the other is O(y/m).

6.1 Reducing Traversals

Given that the performance for each cluster at every frame is determined by number of cells
traversed, the algorithm minimizes the number of traversals. When the view-point fails the
containment test for the current Query cell, it walks to a neighboring cell. If the view-point
motion is small, for most cases the algorithm traverses only a few cells. But consider the case,
when the view-point is very close to the center point CB for the BackRegion (as computed
in Algorithm III), shown in Fig. 5. The initial position of the view-point is shown as V; in the
cell BQ; (corresponding to the previous frame) and the final position is V (corresponding
to the current frame) in the cell BQ4. The traversal algorithm can visit O(m) cells for a
cluster with m Query cells for a small motion. To circumvent such problems, the algorithm
constructs a maximal inscribed cone inside the Back’'Region, around the center-point CB
(as shown in Fig. 5). (A similar inscribed cone is constructed for the FrontRegion.)

If the view-point was in BackRegion in the previous frame, the algorithm first tests
whether the new location of the view-point is inside the inscribed cone of BackRegion.
Only if this test fails, does the algorithm start traversing the Query cells. As a result,
whenever the view-point is close to CB, the algorithm can trivially decide it is contained

12



Figure 6: View-point Tracking

inside the BackRegion. A similar procedure is used if the view-point was in Front’Region
at the previous frame.

6.2 Traversing In and Out of MixedRegion

When the view-point moves into MixedRegion (from BackRegion or FrontRegion), the
algorithm keeps track of two Query cells containing the view-point (of the BQ; and FQ;).
Assume that the view-point was in BackRegion at the previous frame and moves to the
MixedRegion in the current frame. The traversal algorithm walks to a cell BQ,. Let
the bounding polygon of BQ; correspond to BT;. BT, has associated with it, the FQ's it
overlaps. The algorithm starts with one of those cells, and tracks the view-point down to
the appropriate FQ;. The algorithm similar when the view-point moves from FrontRegion
to MixedRegion.

When the view-point moves into BackRegion (FrontRegion) from MixedRegion,
the algorithm stops tracking the query cell from FrontRegion(BackRegion).

7 Extension to Dynamic Environments

The algorithms for partitioning space and tracking the view-point described in the previous
sections assume that the models are static and that only the view-point is changing between
frames. In dynamic environments, however, some of the models may undergo motion (rota-
tion or translation). Recomputing the clusters and space partitions is relatively expensive
for interactive performance; instead, the culling algorithm is modified to take into account
the motion transformations.

13



Whenever a polygon cluster undergoes a rigid transformation, T', the three Regions
and the associated Query cells undergo the same transformation. The algorithm stores T
and applies the inverse transformation to the view-point before tracking it with respect to
the cluster. This assumes, of course, that all the polygons in a cluster undergo the same
transformation. If only a subset of polygons are transformed, this technique doesn’t work
and the algorithm must re-compute the Regions and the Query cells.

8 Implementation and Performance

We have implemented the algorithms presented in this paper and tested them on a number of
models using different graphics systems. The memory requirements of the algorithm is linear
in number of polygons. The routines corresponding to cluster formation and space partition
have not been optimized for performance. The performance of the run-time tracking routine
varies considerably with the representation of data structures and memory organization.
Our current implementation is not optimized for memory use, and we expect to improve the
overall performance by 10 — 15% by optimizing. We plan to release our code as a public
domain library in the near future.

8.1 Geometric Robustness

We used public domain packages for convex hull computation and linear programming. These
packages are reasonably robust and perform well for most inputs. They occasionally fail,
however, because of precision problesm and certain degenerate inputs. We apply a small
random perturbation of the input set (the vertices of the polygons) to overcome such problems
for convex hull computations. It works well in practice.

Moreover, the minima of the linear programming problem in Algorithm II (step 2), is not
unique and corresponds to any point on the bounding plane ;x4 b;Y 4 ¢;2z = d;. Because of
floating point precision problems, the linear programming algorithm may fail to compute a
minima. To solve this problem, we perturb the minimization vector in the direction opposite
to the expected minima. Since we do not a priori know the direction, the pre-processing
algorithm searches for the right directions by perturbing each of x,y, and z, in both positive
and negative directions.

In addition, the value of § used in algorithm II is important. If it is too small, the
point O would be close to the boundary of the BackRegion, potentially causing the Qhull
algorithm to fail. On the other hand, a large § can cause the intersection set (of the modified
half-space) to become an empty set. Our algorithm again searches for a right value, using a
bisection scheme.

Another problem that arises due to floating point precision is cycling between Query
cells. If the view-point is very close to the boundary of a cell, the point location algorithm
may not be able to compute the orientation of a point with respect to a plane accurately. As
a result, the algorithm may walk back to a cell it had already visited. This can result in an
infinite cycle. We avoid such cycles, by introducing visit-counters for each cell and plane and
update their values to correspond to the global frame number. A plane with its visit-counter

14
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equal to the current frame number is not tested for point location again. In such cases, the
algorithm assumes that the view-point is on the correct side.

8.2 Performance of the Tracking Algorithm

The running time of the tracking algorithm is primarily a function of the motion of the view-
point between successive frames. It also depends inversely on the volume of the Query cells
and sub-linearly on the size of the clusters. In Fig. 7, we highlight the average number of
Query cells traversed at each frame as a function of the cluster size. The X-axis corresponds
to the cluster size and the Y-axis is the average number of Query cells traversed. These
data were generated on an SGI Indigo 2 Extreme (with a 250MHz R4400 processor) using
different clusters of the PLB model (as demonstrated in the video).

In Fig. 8, we measure the performance of tracking algorithm as a function of the view-
point motion (on a 250MHz R4400). These data was generated using the sphere model, in
which each cluster has same number of polygons. The sphere is rotated about a fixed axis in
space and the X-axis corresponds to the angle of rotation. The Y-axis is the average tracking
time in microseconds. As the angle increases, the tracking time increases only sub-linearly.
A very large value of rotation (> 120°) corresponds to the case of the view-point oscillating
between BackRegion and FrontRegion in successive frames (from one end of the space
to the other end); it corresponds to the worst case behavior for the tracking algorithm.

8.3 Number of Clusters

The performance of the culling algorithm is primarily determined by the number of clusters
and is nearly independent of cluster size. Given an input model with N polygons, our goal
is to divide it into () clusters such that the overall performance is maximized. The choice of
Q) 1s governed by the following conflicting constraints:

e The running time of the culling algorithm increases linearly as a function of ().
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e The average number of polygons per cluster is N/@. A small value of () would imply
that fewer polygons are culled or that the view-point is in the MixedRegion of more
clusters. In the latter case, the tracking algorithm is applied recursively to each sub-
cluster, which increases the overall running time.

The optimum choice of () is also a function of the graphics system. This includes the
polygon rendering performance as well as the CPU performance. If polygon rendering is
the bottleneck, the clustering algorithm can use a large value of (). The extreme case is
() = N. In this case, the algorithm tests each polygon explicitly, to determine whether it is
back-facing. This would also result in the maximum number of polygons being culled away.
On the other hand, if the CPU performance is the bottleneck, the algorithm should use a
low value of ). The other extreme case is () = 1 and this implies no hierarchical back-face
culling. In general, computing an optimum value of () is non-trivial.

In our implementation, we have used the following heuristic to estimate a good value of
Q). Given a graphics system, the algorithm can easily estimate the average tracking time
per cluster per frame based on simple experiments (e.g. 4us — 8us on a 250 MHz R4400).
In many applications, only a small percentage of CPU time may be available for the culling
algorithm. If the cluster size is (), the algorithm typically tracks about 2Q) — 3¢} clusters and
sub-clusters at each frame (on an average). As a result, we try to maximize ) such that the
total tracking time is not a bottleneck on the CPU. This heuristic works well in practice (as

shown in Table 1)

8.4 Applications and Speed-Up

In Table 1, we have demonstrated the performance of our implementation on different
models and compared it with hardware back-face culling. We used a SGI Indigo* Extreme
(250 MHz R4400 with 128 M B memory) as well as a SGI Reality Enginel I (200 MHz R4400
with 512 MB memory). The polygon rendering performance of the latter is about five times
better than the former. The graphics pipelines on these systems transform the polygons and
check the normal of every transformed polygon to decide whether it is back-facing.

We computed the average percentage of polygons culled in each frame and the addi-
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Platform Indigo2, Extreme Graphics Onyx, Reality Engine
Model | # Polygons | Polygons | Frame-Rate Tracking Polygons | Frame-Rate Tracking
Culled | Tmprovement | Overhead (CPU) Culled | Tmprovement | Overhead (CPU)
Sphere 2048 55.69% 41.91% 2.26% 55.69% 8.60% 6.63%
Bunny 69451 47.23% 71.05% 5.77% 47.23% 59.68% 11.97%
PLB 59079 37.54% 48.59% 6.29% 37.50% 35.15% 13.27%

Table 1: Performance Comparison

tional overhead on the CPU (by the hierarchical back-face culling algorithm) as well as the
improvement in frame rate as compared to the hardware back-face culling algorithm. The
performance varies with the graphics systems and the models. Typically, the algorithm is
able to classify 75 —85% of the model into front-facing and back-facing polygons. 1t does does
not render the back-facing polygons. Overall, it improves the frame-rate by 30—70% for large
models. For relatively small models (like the sphere with 2,048 polygons), the algorithm
does not produce much speed-up on high-end graphics systems. The additional overhead
on the CPU of the tracking algorithm (as a percentage of the total frame time) is less than
10% on average. The algorithm performs extremely well on low-end graphics systems or on
large-scaled complex models, whenever polygon transformation is the bottleneck.

9 Conclusion and Future Work

In this paper, we have presented a simple and elegant algorithm for hierarchical back-face
computation. It is a general purpose algorithm applicable to all polygonal models and on
all graphics systems. It can be easily integrated with all applications, whenever polygon
rendering is the bottleneck. It is worth noting that the actual implementation can be further
simplfied by computing the regions in the dual space. If the back-face determination is also
done in the dual space, we do not need to explicitly compute the boundary of intersection
the half-space in primal space. The actual performance of the algorithm varies on different
models and is also a function of the graphics systems. We have applied the algorithm to a
number of models and are able to improve the frame rate by 30 — 70% in practice, with an
additional overhead of up to 10% on the CPU. Future work include efficient implementation
of parallel graphics systems as well as extension to dynamic models.

10 Acknowledgement

We thank Anselmo Lastra and Steve Molnar for insightful suggestions. Thanks to Greg Turk
and Marc Levoy for the bunny model.

References
[1] J. Airey, J. Rohlf, and F. Brooks. Towards image realism with interactive update rates

in complex virtual building environments. In Symposium on Interactive 3D Graphics,

pages 41-50, 1990.

17




2]

3]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

B. Barber, D. Dobkin, and H. Huhdanpaa. The quickhull algorithm for convex hull.
Technical Report GCGH3, The Geometry Center, MN, 1993.

M. Bern, D. Dobkin, D. Eppstein, and R. Grossman. Visibility with a moving point of
view. Algorithmica, 11:360-78, 1994.

J.H. Clark. Hierarchical geometric models for visible surface algorithms. Communica-

tions of the ACM, 19(10):547-554, 1976.

D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection. In
Proc. 9th Internat. Colloq. Automata Lang. Program., volume 140 of Lecture Notes in
Computer Science, pages 154-165. Springer-Verlag, 1982.

J. Foley, A. Van Dam, J. Hughes, and S. Feiner. Computer Graphics: Principles and
Practice. Addison Wesley, Reading, Mass., 1990.

H. Fuchs, 7Z. Kedem, and B. Naylor. On visible surface generation by a priori tree
structures. In Proc. of ACM Siggraph, volume 14, pages 124-133, 1980.

Z. Gigus, J. Canny, and R. Seidel. Efficiently computing and representing aspect graphs
of polyhedral objects. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(6):542-551, 1991.

N. Greene, M. Kass, and G. Miller. Hierarchical z-buffer visibility. In Proc. of ACM
Siggraph, pages 231-238, 1993.

S. Kumar, D. Manocha, and A. Lastra. Interactive display of large scale nurbs models.

In Proc. of ACM Interactive 3D Graphics Conference, pages 51-5H8, 1995.

M. Newell, R. Newell, and T. Sancha. A new solution to the hidden surface problem.
Proc. ACM Ann. Conf., pages 443-448, 1972.

F.P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag, New
York, 1985.

S. Rubin and T. Whitted. A 3-dimensional representation for fast rendering of complex

scenes. In Proc. of ACM Siggraph, pages 110-116, 1980.

R. Schumacker, B. Brand, M. Gilliland, and W. Sharp. Study for applying computer-
generated images to visual generation. Technical report, AFHRL-TR-69-74, US Air
Force Human Resources Lab, 1969.

R. Seidel. Linear programming and convex hulls made easy. In Proc. 6th Ann. ACM
Conf. on Computational Geometry, pages 211-215, Berkeley, California, 1990.

L.A. Shirman and S.5. Abi-Fzzi. The cone of normals technique for fast processing of

curved patches. In FUROGRAPHICS, pages 261-272, 1993.

I[. Sutherland, R. Sproull, and R. Schumaker. A characterization of ten hidden-surface
algorithms. Computing Surveys, 6(1):1-55, 1974.

18



[18] S.L. Tanimoto. A graph-theoretic real-time visible surface editing technique. In Proc.
of ACM Siggraph, pages 223-228, 1977.

[19] S. Teller and P. Hanrahan. Global visibility algorithms for illumination computations.
In Proc. of ACM Siggraph, pages 239-246, 1993.

[20] S. J. Teller. Visibility Computations in Densely Occluded Polyheral Environments. PhD
thesis, CS Division, UC Berkeley, 1992.

19



