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Abstract� We present hierarchical occlusion maps �HOM� for visibility culling on
complex models with high depth complexity� The culling algorithm uses an object space
bounding volume hierarchy and a hierarchy of image space occlusion maps� Occlusion
maps represent the aggregate of projections of the occluders onto the image plane� For
each frame� the algorithm selects a small set of objects from the model as occluders
and renders them to form an initial occlusion map� from which a hierarchy of occlusion
maps is built� The occlusion maps are used to conservatively cull away a portion of
the model not visible from the current viewpoint� The algorithm is applicable to all
models and makes no assumptions about the size� shape� or type of occluders� It has
been implemented on current graphics systems and has been applied to large models
composed of hundreds of thousands of polygons� In practice� it achieves signi�cant
speedup in interactive walkthroughs of models with high depth complexity�
Key Words and Phrases� visibility culling� interactive display� image pyramid� oc�
clusion culling� hierarchical data structures

� Introduction
Interactive display and walkthrough of large geometricmodels currently pushes the limits
of graphics technology� Environments composed of millions of primitives �e�g� polygons�
are not uncommon in applications such as simulation�based design of large mechani�
cal systems� architectural visualization� or walkthrough of outdoor scenes� Although
throughput of graphics systems has increased considerably over the years� the size and
complexity of these environments has been growing even faster� In order to display such
models at interactive rates� the rendering algorithms need to use techniques based on
visibility culling� levels�of�detail� texturing� etc� to limit the number of primitives ren�
dered in each frame� In this paper� we focus on conservative visibility culling algorithms�
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Their goal is to cull away large portions of the environment not visible from the current
viewpoint�

Our criteria for an e	ective visibility culling algorithm are generality� interactive

performance� and signi�cant culling� Additionally� in order for it to be practical� it
should be implementable on current graphics systems and work well on large real�world
models� To the best of our knowledge� no earlier algorithm can achieve all these goals
simultaneously�

Main Contribution� In this paper� we present a new algorithm for visibility culling
in complex environments with high depth complexity� At each frame� the algorithm
carefully selects a small subset of the model as occluders and renders them to build
hierarchical occlusion maps �HOM�� The hierarchy is an image pyramid and each map
in the hierarchy is composed of pixels corresponding to rectangular blocks in the screen
space� The pixel value records the opacity of the block� The algorithm decomposes the
visibility test for an object into a conservative two�dimensional overlap test� performed
against the occlusion map hierarchy� and a conservative Z test to compare the depth�
The overall approach combines an object space bounding volume hierarchy �also useful
for view frustum culling� with the image space occlusion map hierarchy to cull away a
portion of the model not visible from the current viewpoint� Some of the main features
of the algorithm are


�� Generality� The algorithm requires no special structures in the model and places
no restriction on the types of occluders� The occluders may be polygonal objects�
curved surfaces� or even not be geometrically de�ned �e�g� a billboard��

�� Occluder Fusion� A key characteristic of the algorithm is the ability to combine

a �forest
 of small or disjoint occluders� rather than using only large occluders�
In most cases� the union of a set of occluders can occlude much more than what
each of them can occlude taken separately� This is very useful for large mechanical
CAD and outdoor models�

�� Signi�cant Culling� On high depth complexity models� the algorithm is able to
cull away a signi�cant fraction �up to ���� of the model from most viewpoints�

�� Portability� The algorithm can be implemented on most current graphics sys�
tems� Its main requirement is the ability to read back the frame�bu	er� The
construction of hierarchical occlusion maps can be accelerated by texture mapping
hardware� It is not susceptible to degeneracies in the input and can be parallelized
on multiprocessors�

�� E�ciency� The construction of occlusion maps takes a few milliseconds per frame
on medium� to high�end graphics systems� The culling algorithm achieves signif�
icant speedup in interactive walkthroughs of models with high depth complexity�
The algorithm involves no signi�cant preprocessing and is applicable to dynamic
environments�

�� Approximate Visibility Culling� Our approach can also use the hierarchy of
maps to perform approximate culling� By varying an opacity threshold parameter
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Figure �
 Demonstration of our algorithm on the CAD model of a submarine�s auxiliary
machine room� The model has ������� polygons� The green lines outline the viewing
frustum� The blue color indicates objects selected as occluders� gray the objects not
culled by our algorithm and transparent red the objects culled away� For this particular
view� ����� of the model is culled�

the algorithm is able to �ll small transparent holes in the occlusion maps and
to cull away portions of the model which are visible through small gaps in the
occluders�

The resulting algorithm has been implemented on di	erent platforms �SGI Max
Impact and In�nite Reality� and applied to city models� CAD models� and dynamic
environments� It obtains considerable speedup in overall frame rate� In Figure � we
demonstrate its performance on a submarine�s Auxiliary Machine Room�

Organization
 The rest of the paper is organized in the following manner� We brie�y
survey related work in Section � and give an overview of our approach in Section ��
Section � describes occlusion maps and techniques for fast implementation on current
graphics systems� In Section � we describe the entire culling algorithm� We describe
its implementation and performance in Section �� Section � analyses our algorithm and
compares it with other approaches� Finally� in Section � we brie�y describe some future
directions�
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� Related Work

Visibility computation and hidden surface removal are classic problems in computer
graphics �FDHF���� Some of the commonly used visibility algorithms are based on
Z�bu	er �Cat��� and view�frustum culling �Cla��� GBW���� Others include Painter�s
Algorithm �FDHF��� and area�subdivision algorithms �War��� FDHF����

There is signi�cant literature on visible surface computation in computational geom�
etry� Many asymptotically e�cient algorithms have been proposed for hidden surface
removal �Mul��� McK���� See �Dor��� for a recent survey� However� the practical utility
of these algorithms is unclear at the moment�

E�cient algorithms for calculating the visibility relationship among a static group of
�D polygons from arbitrary viewpoints have been proposed based on the binary space�
partitioning �BSP� tree �FKN���� The tree construction may involve considerable pre�
processing in terms of time and space requirements for large models� In �Nay���� Naylor
has given an output�sensitive visibility algorithm using BSPs� It uses a �D BSP tree to
represent images and presents an algorithm to project a �D BSP tree� representing the
model in object space� into a �D BSP tree representing its image�

Many algorithms structure the model database into cells or regions� and use a com�
bination of o	�line and on�line algorithms for cell�to�cell visibility and the conservative
computation of the potentially visible set �PVS� of primitives �ARB��� TS��� LG����
In particular� Teller et al� �TS��� Tel��� TH��� have presented analytic algorithms for
cell�to�cell visibility and also applied them to e�cient calculation of form factors for ra�
diosity� Such approaches have been successfully used to visualize architectural models�
where the division of a building into discrete rooms lends itself to a natural division of
the database into cells� It is not apparent that cell�based approaches can be generalized
to an arbitrary model�

Other algorithms for densely�occluded but somewhat less�structured models have
been proposed by Yagel and Ray �YR���� They used regular spatial subdivision to
partition the model into cells and describe a �D implementation� However� the resulting
algorithm is very memory�intensive and does not scale well to large models�

Object space algorithms for occlusion culling in general polygonal models have been
presented by Coorg and Teller �CT��a� CT��b� and Hudson et al� �Hu���� These algo�
rithms dynamically compute a subset of the objects as occluders and use them to cull
away portions of the model� In particular� �CT��a� CT��b� compute an arrangement
corresponding to a linearized portion of an aspect graph and track the viewpoint within
it to check for occlusion� �Hu��� use shadow frusta and fast interference tests for oc�
clusion culling� All of them are object�space algorithms and the choice of occluder is
restricted to convex objects or simple combination of convex objects �e�g� two convex
polytope sharing an edge�� These algorithms are unable to combine a �forest
 of small
non�convex or disjoint occluders to cull away large portions of the model�

A hierarchical Z�bu	er algorithm combining spatial and temporal coherence has been
presented in �GKM��� GK��� Gre���� It uses two hierarchical data structures
 an octree
and a Z�pyramid� The algorithm exploits coherence by performing visibility queries on
the Z�pyramid and is very e	ective in culling large portions of high�depth complexity
models� However� most current graphics systems do not support the Z�pyramid capa�
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bility in hardware� and simulating it in software can be relatively expensive� In �GK����
Greene and Kass used a quadtree data structure to test visibility throughout image�space
regions for anti�aliased rendering�

More recently� Greene �Gre��� has presented a hierarchical tiling algorithm using
coverage masks� It uses an image hierarchy named a �coverage pyramid
 for visibility
culling� Traversing polygons from front to back� it can process densely occluded scenes
e�ciently and is well suited to anti�aliasing by oversampling and �ltering�

For dynamic environments� Sudarsky and Gotsman �SG��� have presented an output�
sensitive algorithm which minimizes the time required to update the hierarchical data
structure for a dynamic object and minimize the number of dynamic objects for which
the structure has to be updated�

A number of techniques for interactive walkthrough of large geometric databases have
been proposed� Refer to �Br��� for a recent survey� A number of commercial systems like
Performer �RH���� used for high performance graphics� and Brush �SBM����� used for
visualizing architectural and CAD models� are available� They use techniques based on
view�frustum culling� levels�of�detail� etc�� but have little support for occlusion culling
on arbitrary models�

The structure of hierarchical occlusion maps is similar to some of the hierarchies that
have been proposed for images� such as image pyramids �TP���� MIP maps �Wil���� Z�
pyramids �GKM���� coverage pyramids �Gre���� and two�dimensional wavelet transforms
like the non�standard decomposition �GBR��� SDS����

� Overview

In this paper we present a conservative solution to the visibility problem� Given a scene
database and a viewpoint� our algorithm culls a subset of the objects not visible� The
heart of the algorithm is a hierarchy of occlusion maps� which records the aggregate
projection of occluders onto the image plane at di	erent resolutions� We use occlusion
maps because they can be built quickly and have several unique properties �described
later in the paper�� The use of occlusion maps re�ects a decomposition of the visibil�
ity problem into two sub�problems
 a two�dimensional overlap test and a depth test�
The former decides whether the screen space projection of the potential occludee lies
completely within the screen space projection of the union of all occluders� The latter
determines whether or not the potential occludee is behind the occluders� We use occlu�
sion maps for the overlap tests� and a depth estimation bu�er for the conservative depth
test� In the conventional Z�bu	er algorithm �as well as in the hierarchical Z�bu	er algo�
rithm�� the overlap test is implicitly performed as a side e	ect of the depth comparison
by initializing the Z�bu	er with large numbers�

The algorithm renders the occluders at each frame and builds a hierarchy �pyramid�
of occlusion maps� In addition to the model database� the algorithmmaintains a separate
occluder database� which is derived from the model database as a preprocessing step�
Both databases are represented as bounding volume hierarchies� The rendering pipeline
with our algorithm incorporated is illustrated in Figure �� The shaded blocks indicate
new stages introduced due to our algorithm� For each frame� the pipeline executes in
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Figure �
 Modi�ed graphics pipeline showing our algorithm� The shaded blocks indicate
components unique to culling with hierarchical occlusion map�

two major phases

�� Construction of the Occlusion Map Hierarchy� The occluders are selected

from the occluder database and rendered to build the occlusion map hierarchy� This
involves


� View�frustum culling� The algorithm traverses the bounding volume hierarchy
of the occluder database to �nd occluders lying in the viewing frustum�

� Occluder selection� The algorithm selects a subset of the occluders lying in the
viewing frustum� It utilizes temporal coherence between successive frames�

� Occluder rendering and depth estimation� The selected occluders are ren�
dered with special shading parameters to form an image in the framebu	er which is
the highest resolution occlusion map� A depth estimation bu	er is built to record
the depth of the occluders�

� Building the Hierarchical Occlusion Maps� After occluders are rendered�
the algorithm recursively �lters the rendered image down by averaging blocks of
pixels� This process can be accelerated by texture mapping hardware on many
current graphics systems�

�� Visibility Culling with Hierarchical Occlusion Maps� Given an occlusion
map hierarchy� the algorithm traverses the bounding volume hierarchy of the model
database to perform visibility culling� The main components of this stage are


� View�frustum Culling� The algorithm applies standard view�frustum culling to
the model database�
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� Depth Comparison� For each potential occludee� the algorithm conservatively
checks whether it is behind the occluders�

� Overlap test with Occlusion Maps� The algorithm traverses the occlusion
map hierarchy to conservatively decide if each potential occludee�s screen space
projection falls completely within the opaque areas of the maps�

Only objects that fail one of the latter two tests �depth or overlap� are rendered�
Our approach shares a number of characteristics with earlier work� This includes

dynamically selecting the occluders� as in �CT��b� CT��a� and �Hu���� and using a
combination of object space and image space hierarchy� as in �GKM��� and �Gre����
Di	erences between their approaches and our approach are highlighted in Section ��

� Occlusion Maps

In this section� we present occlusion maps� algorithms using texture mapping hardware
for fast construction of the hierarchy of occlusion maps� and state a number of properties
of occlusion maps which are used by the visibility culling algorithm�

When an opaque object is projected to the screen� the area of its projection is made
opaque� The opacity of a block on the screen is de�ned as the ratio of the sum of
the opaque areas in the block to the total area of the block� An occlusion map is a
two�dimensional array in which each pixel records the opacity of a rectangular block of
screen space� Any rendered image can have an accompanying occlusion map which has
the same resolution and stores the opacity for each pixel� In such a case� the occlusion
map is essentially the � channel �FDHF��� of the rendered image �assuming � values
for objects are set properly during rendering�� though generally speaking a pixel in the
occlusion map can correspond to a block of pixels in the screen space� Our hierarchical
occlusion maps have a number of similarities to and di	erences from coverage pyramids
�Gre���� as discussed in Section ����

��� Image Pyramid

Given the lowest level occlusion map� the algorithm constructs from it a hierarchy of oc�
clusion maps �HOM� by recursively applying the average operator to rectangular blocks
of pixels� This operation forms an image pyramid as shown in Figure �� The resulting
hierarchy represents the occlusion map at multiple resolutions� It greatly accelerates the
overlap test and is used for approximate culling� In the rest of the paper� we follow the
convention that the highest resolution occlusion map of a hierarchy is at level ��

The algorithm �rst renders the occluders into an image� which forms the lowest�level
and highest resolution occlusion map� This image represents an image�space fusion of
all occluders in the object space� The occlusion map hierarchy is built by recursively
�ltering from the highest�resolution map down to some minimal resolution �e�g� �� ���
The highest resolution need not match that of the image of the model database� Using
a lower image resolution for rendering occluders may lead to inaccuracy for occlusion
culling near the edges of the objects� but it speeds up the time for constructing the
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hierarchy� Furthermore� if hardware multi�sampled anti�aliasing is available� the lowest�
level occlusion map has more accuracy� This is due to the fact that the anti�aliased
image in itself is already a �ltered down version of a larger super�sampled image on
which the occluders were rendered�

Figure �
 The hierarchy of occlusion maps� This particular hierarchy is created by recur�
sively averaging over � blocks of pixels� The outlined square marks the correspondence
of one top�level pixel to pixels in the other levels� The image also shows the rendering
of the torus to which the hierarchy corresponds�

��� Fast Construction of the Hierarchy

When �ltering is performed on � � � blocks of pixels� hierarchy construction can be
accelerated by graphics hardware that supports bilinear interpolation of texture maps�
The averaging operator for ��� blocks is actually a special case of bilinear interpolation�
More precisely� the bilinear interpolation of four scalars or vectors v��v��v��v� is
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��� ���� � ��v�� ��� � ��v�� ��v� � �� � ���v��

where � � � � �� � � � � � are the weights� In our case� we use � � � � ��� and
this formula produces the average of the four values� Thus� by carefully setting the
texture coordinates� we can �lter an �N � �N occlusion map to N � N by drawing a
two dimensional rectangle of size N �N � texturing it with the �N � �N occlusion map�
and reading back the rendered image as the N �N occlusion map� Figure � illustrates
this process�

The graphics hardware typically needs some setup time for the required operations�
When the size of the map to be �ltered is relatively small� setup time may dominate
the computation� In such cases� the use of texture mapping hardware may slow down
the computation of occlusion maps rather than accelerate it and hierarchy building is
faster on the host CPU� The break�even point between hardware and software hierarchy
construction varies with di	erent graphics systems�

�BM��� have presented a technique for generating mipmaps by using a hardware
accumulation bu	er� We did not use this method because the accumulation bu	er is
less commonly supported in current graphics systems than texture mapping�

��� Properties of Occlusion Maps

The hierarchical occlusion maps for an occluder set have several desirable properties
for accelerating visibility culling� The visibility culling algorithm presented in Section �
utilizes these properties�

�� Occluder Fusion� Occlusion maps represent the fusion of small and possibly
disjoint occluders� No assumptions are made on the shape� size� or geometry of the
occluders� Any object that is renderable can serve as an occluder�

�� Hierarchical Overlap Test� The hierarchy allows us to perform a fast overlap
test in screen space for visibility culling� This test is described in more detail in Section
����

	� High�level Opacity Estimation� The opacity values in a low�resolution oc�
clusion map can give an estimate of the opacity values in higher�resolution maps� For
instance� if a pixel in a higher level map has a very low intensity value� it implies that
almost all of its descendant pixels have low opacities� i�e� there is a low possibility of
occlusion� This is due to the fact that occlusion maps are based on the average op�
erator rather than the minimum or maximum operators� This property allows for a
conservative early termination of the overlap test�


� Approximate Visibility Culling� The hierarchy provides a natural method
for approximate occlusion culling� It may be used to cull away portions of the model
visible only through small gaps in or among occluders� A high opacity value of a pixel
in a low resolution map implies that most of its descendant pixels are opaque� The
algorithm uses the opacity threshold parameter to control the degree of approximation�
More details are given in Section ����
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Figure �
 Use of texture�mapping hardware to build occlusion maps

� Visibility Culling with Hierarchical OcclusionMaps

An overview of the visibility culling algorithm has been presented in Section �� In this
section� we present detailed algorithms for overlap tests with occlusion maps� depth
comparison� and approximate culling�

��� Overlap Test with Occlusion Maps

The two�dimensional overlap test of a potential occludee against the union of occluders
is performed by checking the opacity of the pixels it covers in the occlusion maps� An
exact overlap test would require a scan�conversion of the potential occludee to �nd out
which pixels it touches� which is relatively expensive to do in the software� Rather� we
present a simple� e�cient� and conservative solution for the overlap test�

For each object in the viewing frustum� the algorithm conservatively approximates
its projection with a screen�space bounding rectangle of its bounding box� This rectangle
covers a superset of the pixels covered by the actual object� The extremal values of the
bounding rectangle are computed by projecting the corners of the bounding box� The
main advantage of using the bounding rectangle is the reduced cost of �nding the pixels
covered by a rectangle compared to scan�converting general polygons�

The algorithm uses the occlusion map hierarchy to accelerate the overlap test� It
begins the test at the level of the hierarchy where the size of a pixel in the occlusion
map is approximately the same size as the bounding rectangle� The algorithm examines
each pixel in this map that overlaps the bounding rectangle� If any of the overlapping
pixels is not completely opaque �� the algorithm recursively descends from that pixel
to the next level of the hierarchy and checks all of its sub�pixels that are covered by
the bounding rectangle� If all the pixels checked are completely opaque� the algorithm
concludes that the occludee�s projection is completely inside that of the occluders� If
not� the algorithm conservatively concludes that the occludee may not be completely
obscured by the occluders� and it is rendered�

�By de�nition� a pixel is completely opaque if its value is above or equal to the opacity threshold�
which is de�ned in Section 
���
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The algorithm supports early termination in overlap tests� If the opacity of a pixel
in a low�resolution map is too small� there is small probability that we can �nd high
opacity values even if we descend into the sub�pixels� So the overlap test stops and
concludes that the object is not occluded� The transparency thresholds are used to
de�ne lower�bounds on opacity below which traversal of the hierarchy is terminated�

��� Depth Comparison

Occlusion maps do not contain depth information� They provide a necessary condition
for occlusion in terms of overlap tests in the image plane� but do not detect whether
an object is in front of or behind the occluders� The algorithm manages the depth
information separately to complete the visibility test� In this section� we propose two
algorithms for depth comparison�

����� Single Z plane

One of the simplest ways to manage the depth is to use a single Z plane� It is based
on de�ning a plane parallel to and beyond the near plane � This plane separates the
occluders from the potential occludees so that any object lying beyond the plane is
farther away than any occluder� As a result� an object which is contained within the
projection of the occluders and lies beyond the parallel plane is completely occluded�
This is an extremely simple and conservative method which gives a rather coarse bound
for the depth values of all occluders�
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Figure �
 Distance criterion for dynamic selection
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����� Depth Estimation Bu�er

The depth estimation bu	er is a software bu	er that provides a more general solution
for conservatively estimating the depth of occluders� Rather than using a single plane to
capture the depth of the entire set of occluders� the algorithm partitions the screen�space
and uses a separate plane for each region of the partition� By using a separate depth
for each region of the partition� the algorithm obtains a �ner measure of the distances
to the occluders� The depth estimation bu	er essentially is general�purpose software Z
bu	er that records the farthest distances instead of the nearest�

An alternative to using the depth estimation bu	er might be to read the accurate
depth values back from a hardware Z bu	er after rendering the occluders� This approach
was not taken mainly because it involves further assumptions of hardware features �i�e�
there is a hardware Z�bu	er� and we are able read Z�values reasonably fast in a easily�
usable format��

Construction of the depth estimation bu�er� The depth estimation bu	er is
built at every frame� which requires determining the pixels to which the occluders project
on the image plane� Scan�converting the occluders to do this would be unacceptably
expensive� As we did in constructing occlusion maps� we conservatively estimate the
projection and depth of an occluder by its screen�space bounding rectangle and the Z
value of its bounding volume�s farthest vertex� The algorithm checks each bu	er entry
covered by the rectangle for possible updates� If the rectangle�s Z value is greater than
the old entry� the entry is updated� This process is repeated for all occluders�

Conservative Depth Test� To perform the conservative depth test on a potential
occludee� it is approximated by the screen space bounding rectangle of its bounding box
�in the same manner as in overlap tests�� which is assigned a depth value the same as that
of the nearest vertex on the bounding box� Each entry of the depth estimation bu	er
covered by the rectangle is checked to see if any entry is greater than the rectangle�s Z
value� If this is the case then the object is conservatively regarded as being partly in
front of the union of all occluders and thus must be rendered�

The cost of the conservative Z�bu	er test and update� though far cheaper than
accurate operations� can still be expensive as the resolution of the depth estimation
bu	er increases� Furthermore� since we are performing a conservative estimation of the
objects� scree space extents� there is a point where increasing resolution of the depth
estimation bu	er does not help increase the accuracy of depth information� Normally
the algorithm uses only coarse�grain resolution �e�g� �� � ����

��� Occluder Selection

At each frame� the algorithm selects an occluder set� The optimal set of occluders is
exactly the visible portion of the model� Finding this optimal set is the visible surface
computation problem itself� Another possibility is to pre�compute global visibility in�
formation for computing the useful occluders at every viewpoint� The fastest known
algorithm for computing the e	ects on global visibility due to a single polyhedron with
m vertices can take O�m� logm� time in the worst case �GCS����

We present algorithms to estimate a set of occluders that are used to cull a signi�cant
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Figure �
 Demonstration of approximate culling� The blue rectangles highlight the holes
in the occlusion maps� The holes dissolve as we go up in the hierarchy� The numbers
on the left and right hand sides of the occlusion maps are the opacity thresholds used
by the occlusion culling algorithm to generate the left and right images� respectively� In
the right image� the algorithm culls away ��� more of the model�

fraction of the model� We perform preprocessing to derive an occluder database from
the model� At runtime the algorithm dynamically selects a set of occluders from that
database�

��	�� Building the Occluder Database

The goal of the pre�processing step is to discard objects which do not serve as good
occluders from most viewpoints� We use the following criteria to select good occluders
from the model database


� Size� Small objects will not serve as good occluders unless the viewer is very close
to them�

� Redundancy� Some objects� e�g� a clock on the wall� provide redundant occlusion
and are removed from the database�

� Rendering Complexity� Objects with a high polygon count or rendering com�
plexity are not preferred� as scan�converting them may take considerable time and
it a	ects the overall frame rate�

��	�� Dynamic Selection

At runtime� the algorithm selects a set of objects from the occluder database� The
algorithm uses a distance criterion� size� and temporal coherence to select occluders�

The single Z�plane method for depth comparison� presented in Section ������ is also
an occluder selection method� All objects within the Z�plane are occluders�

When the algorithm uses the depth estimation bu	er� it dynamically selects occluders
based on a distance criterion and a limit �L� on the number of occluder polygons� These
two variables may vary between frames as a function of the overall frame rate and
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percentage of model culled� Given L� the algorithm tries to �nd a set of good occluders
whose total polygon count is less than L�

The algorithm considers each object in the occluder database lying in the viewing
frustum� The distance between the viewer and the center of an object�s bounding volume
is used as an estimate of the distance from the viewer to the object� The algorithm sorts
these distances� and selects the nearest objects as occluder until their combined polygon
count exceeds L� This works well for most situations� except when a good occluder
is relatively far away� One such situation has been shown in Figure �� The distance
criterion will select C� D� E� F � etc� as occluders� but L will probably be exceed
before A and B are selected� Thus� we lose signi�cant occlusion that would have been
contributed by A and B� In other words� there is a hole in the occlusion map which
decreases the culling rate�

We use a feedback mechanism to handle this problem� making use of temporal co�
herence� If the culling rate and frame rate from the previous frame are too low� we
examine pixels in the lowest�resolution occlusion map �normally � � �� for existence of
major holes� i�e� pixel values that are lower than some threshold� Simple heuristics are
used to combine such pixels into as few rectangular regions as possible� We next �nd
occluders that project to these regions� A sub�frustum lying within the view frustum is
formed by the region with the lowest average opacity and the viewing point� Occluders
which intersect this frustum and have not been selected in the last frame are sorted by
distance and the nearest ones are selected until a polygon count �some fraction of L� is
exceeded� After selecting these 
hole��lling
 occluders� the algorithm chooses the rest
of the occluders by the standard occluder selection criteria� At the end of the frame�
if we observed signi�cant increase in culling rate over the last frame� we append the

hole��lling
 occluders into a queue� Occluders in the queue are always selected� The
queue is considered full if the total polygon count of the occluders in the queue exceeds
some �xed limit� Attempts to add an object into a full queue causes the object at the
head of the queue to be removed�

��� Approximate Visibility Culling

An additional feature of our algorithm is to perform approximate visibility culling� which
ignores objects only visible through small holes in or among the occluders� This ability
is based on an inherent property of HOM that it naturally represents the combined
occluder projections at di	erent levels of details�

In the process of �ltering maps to build the hierarchy� a pixel in a low resolution map
can obtain high opacity value even if a small number of its descendant pixels have low
opacity� Intuitively� a small group of low�opacity pixels �a 
hole
� in a high�resolution
map can dissolve as the average operation �which involves high opacity values from
neighboring pixels� is recursively applied to build lower�resolution maps�

The opacity value above which the pixel is considered completely opaque is called
the opacity threshold� which is by default ���� The visibility culling algorithm varies the
degree of approximation by changing the opacity thresholds� As the threshold is lowered�
the algorithm becomes more approximate� This e	ect of the opacity threshold is based
on the fact that if a pixel is considered completely opaque� the culling algorithm does not

��



go into the descendent pixels for further opacity checking� If the opacity a pixel in a low�
resolution map is not ��� �because some of the pixel�s descendents have low opacities��
but is still higher than the opacity threshold assigned to that map� the culling algorithm
does not descend to the sub�pixels to �nd low opacities� In e	ect this means that some
small holes in higher�resolution maps are ignored�

Approximate visibility is useful because we don�t expect to see manymeaningful parts
of the model through small holes in or among the occluders� In practice� culling such
portions of the models does not create noticeable visual artifacts� Omitting such holes
can signi�cantly increase the culling rate� To have similar degrees of approximations at
di	erent levels of maps� the opacity threshold should go up as map resolution goes up�
In Figure �� we show the impact of varying the opacity threshold on an environment
with a �forest
 of small occluders�

��� Dynamic Environments

The algorithm easily extends to dynamic environments� As no static bounding volume
hierarchy may be available� the algorithm uses oriented bounding boxes around each
object� The occluder selection algorithm involves no pre�processing� so the occluder
database is exactly the model database� The oriented bounding boxes are used to
construct the depth estimation bu	er as well as to perform the overlap test with the
occlusion map hierarchy�

� Implementation and Performance

We have implemented the algorithm as part of a walkthrough system� which is based on
OpenGL and currently runs on SGI platforms� Signi�cant speed�ups in frame rates have
been observed on di	erent models� In this section� we discuss several implementation
issues and discuss its performance on SGI Max Impacts and In�nite Reality platforms�

��� Implementation

As the �rst step in creating the occlusion map hierarchy� occluders are rendered in a
���� ��� viewport in the back framebu	er� in full white color with lighting and texture
mapping turned o	� Anyone of the three color channels of the resulting image can serve
as the highest�resolution occlusion map on which the hierarchy is based� An alternate
method could be rendering the occluders with the original color and shading parameters
and use the � channel of the rendered image to construct the initial map� However�
for constructing occlusion maps we do not need a �realistic
 rendering of the occluders�
which may be more expensive� In most cases the resolution of ���� ��� is smaller than
that of the �nal rendering of the model� As a result� it is possible to have artifacts
in occlusion� In practice� if the �nal image is rendered at a resolution of ���� � �����
rendering occluders at ������� is a good trade�o	 between accuracy and time required
to �lter down the image in building the hierarchy�
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To construct the occlusion map hierarchy� we recursively average � � � blocks of
pixels using the texture mapping hardware as well as the host CPU� The resolution of
the lowest�resolution map is typically � � �� The break�even point between hardware
and software hierarchy construction �as described in Section ���� varies with di	erent
graphics systems� For SGI Max Impacts� we observed the shortest construction time
when the algorithm �lters from ��� to ��� � ��� using texture�mapping hardware� and
from ������� to ����� and �nally down to ��� on the host CPU� For In�nite Reality�
which has faster pixel transfer rates� the best performance is obtained by �ltering from
��� � ��� to ��� �� using the hardware and using the host CPU thereafter� Hierarchy
construction time is about � milliseconds for the Max Impacts and � milliseconds for
the In�nite Reality� with a small variance �around ��� milliseconds� between frames�

The implementation of depth estimation bu	er is optimized for block�oriented query
and updates� The hierarchical overlap test is straight�forward to implement� It is rela�
tively harder to optimize as it is recursive in nature�

��� Performance

We demonstrate the performance of the model on three environments� These are


� City Model� It is composed of di	erent models and has ���� ��� polygons� A
bird�s eye view of the model has been shown in Figure ��

� Dynamic Environment� It is composed of dinosaurs and teapots each undergo�
ing independent random motion� The total polygon count is ���� ���� It has been
shown in Figure � and Fig� ���

� Submarine Auxiliary Machine Room 
AMR�� It is a real�world CAD model
obtained from industrial sources� The model has ���� ��� polygons� Di	erent
views of the model are shown in Figure � and Figure ���

As mentioned earlier� our algorithm uses a bounding volume hierarchy �i�e� a scene
graph� for both the original model database as well as the occluder database� Each
model we used is originally a collection of polygons with no structure information� We
construct an axis�aligned bounding box hierarchy for each database�

For the dynamic environment and the city model� we use the model database itself
as the occluder database� without any pre�processing for static occluder selection� For
the AMR model� the pre�processing yields an occluder database of ���� ��� polygons�
The algorithm removes many objects that has little potential of being a good occluder
�like the bolts on the diesel engine� thin pipes etc�� from the original model� Further�
most of these parts are densely tessellated� making them to expensive to be directly
used as occluders� We use the simpli�ed version of the parts which are produced by
algorithms in �Cohen���� Although many algorithms of this kind give good error bounds
on the simpli�ed model� they do not guarantee that the projection of the simpli�ed
object lies within that of the original� Therefore� visibility artifacts may be introduced
by the simpli�ed occluders� We use very tight error bounds so that so that artifacts are
rarely noticeable�
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The performance of the algorithms has been highlighted in Figure �� The graphs on
the left show the frame rate improvement� while the graphs on the right highlights the
percentage of the model culled at every frame� The performance of the city model was
generated on the Max Impact while the other two were rendered on the In�nite Reality�
The actual performance varies due to two reasons


�� Di	erent models have varying depth complexities� Furthermore� the percentage of
occlusion varies with the viewpoint�

�� The ability of the occluder selection algorithm to select the �right
 subset of oc�
cluder� The performance of the greedy algorithm� e�g� distance based criterion�
varies with the model distribution and the viewpoint�

The occluder polygon count budget �L� per frame is important for the performance
of the overall algorithm� If too few occluders are rendered� most of the pixels in the
occlusion map have low opacities and the algorithm is not able to cull much� On the other
hand� if too many occluder polygons are rendered� they may take a signi�cant percentage
of the total frame time and slow down the rendering algorithm� The algorithm starts
with an initial guess on the polygon count and adaptively modi�es it based on the
percentage of the model culled and frame rate� If the percentage of the model culled
is low� it increases the count� If the percentage is high and the frame rate is low� it
decreases the count�

Average time spent in di	erent stages of the algorithm� occluder selection and ren�
dering� hierarchy generation� occlusion culling and �nal rendering� have been shown in
Figure �� The average time to render the model without occlusion culling is normalized
to ����� In these cases� the average time in occluder rendering varies between �������

� Analysis and Comparison

In this section we analyze some of the main features of our algorithm and compare it
with other approaches�

Our algorithm is generally applicable to all models and obtains signi�cant culling
when there is high depth complexity� This is mainly due to its use of occlusion maps to
combine the occluders in the image space� The extensive use of screen space bounding
rectangles as an approximation of the object�s screen space projection makes the overlap
tests and depth tests fast and cheap�

In terms of hardware assumptions� the algorithm requires only the ability to read
back the framebu	er� Texture mapping with bilinear interpolations� when available� can
be directly used to accelerate the construction of the occlusion map hierarchy�

In general� if the algorithm is spending a certain percentage of the total frame time
in occluder rendering� HOM generation and culling �depth test and overlap test�� it
should at least cull away a similar percentage of the model so as to justify the overhead
of occlusion culling� If a model under some the viewing conditions does not have su��
cient occlusion� the overall frame rate may decrease due to the overhead� in which case
occlusion culling should be turned o	�
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��� Comparison to Object Space Algorithms

Work on cells and portals�ARB��� TS��� LG��� addresses a special class of densely oc�
cluded environments where there are plenty of cell and portal structures� as in an in�door
architectural model� �ARB��� TS��� pre�precesses the model to identify potentially vis�
ible set of primitives for each cell� �LG��� developed a dynamic version which eliminates
the pre�processing� These methods works very well for the particular environment� but
are not applicable to models without cell�portal structures�

Our algorithm works without modi�cation for environments with cells and portals�
but occluder selection can be optimized for these environments� The cell boundaries
can be used to form the occluder database� As an alternative� we can �ll a viewport
with white pixels and then render the portals in black to form the occlusion map� In
general however� we do not expect to outperform the specialized algorithms in cell�port
environments�

Two di	erent object space solutions for more general models have been proposed by
�CT��b� CT��a� and �Hu���� They dynamically choose polygons and convex objects �or
simple convex combination of polygons� as occluders and use them to cull away invisible
portions of the model� However� many models do not have single big convex occluders�
In such cases� merging small� irregular occluders is critical for signi�cant culling� which
is an di�cult task in the object space� Our algorithm lies between the object space and
the image space and the occluder merging problem is solved in image space�

��� Comparison with Hierarchical Z	bu
er Algorithm

In many ways� we present an alternative approach to hierarchical Z�bu	er visibility
�GKM���� The main algorithm presented in �GKM��� performs updates of the Z�bu	er
hierarchy as geometry is rendered� It assumes special�purpose hardware for fast depth
updating and querying to obtain interactive performance� In terms of potential� we
believe it is perhaps the most powerful and e	ective algorithm for visibility culling�
However� we are not aware of any hardware implementation�

There is a possible variation of hierarchical Z�bu	er algorithm which selects occlud�
ers� renders them� reads back the depth bu	er once per frame� builds the Z�pyramid�
and use the screen�space bounding boxes for fast culling� �The algorithm proposed
in �GKM��� uses the exact projection of octree nodes� which requires software scan�
conversion�� In this case� the main di	erence between our approach and the possible
variation of hierarchical Z�bu	er reduces to that between the properties of the occlusion
map hierarchy and the Z pyramid�

The major advantage of the Z hierarchy is that it has the depth values� which we
need to manage separately for hierarchical occlusion maps �Section ����� On the other
hand� the occlusion map hierarchy has several unique features� These are based on the
fact HOM use an average operator� whereas the Z hierarchy use a minimumor maximum
operator�

�� The construction of HOM has readily�available hardware support on many graph�
ics systems� Further� if �ltering is performed in software� cost of the average
operator is smaller than the minimum�maximum operator �due to no branching
instructions��
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�� HOM supports early termination in the hierarchical test by using a transparency
threshold �Section ���� and approximate occlusion culling at di	erent resolutions
by using an opacity threshold �Section �����

�� A very low opacity pixel in the higher�level �low�resolution� occlusion map implies
that there is insu�cient occlusion in the corresponding lower�level map� Not only
is this information used for early termination of the hierarchical test� but also used
to adaptively adjust the selection criterion used in the occluder selection algorithm�

��� Comparison with Hierarchical Tiling with Coverage Masks

Hierarchical polygon tiling �Gre��� tiles polygons in front�to�back order and uses a �cov�
erage
 pyramid for visibility culling� The coverage pyramid and hierarchical occlusion
maps serve the same purpose in that they both record the aggregate projections of
objects� �In this sense� our method has more resemblance to hierarchical tiling than
hierarchical Z�bu	er�� However� a pixel in a mask in the coverage pyramid has only
three values �covered� vacant or active�� while a pixel in an occlusion map has a contin�
uous opacity value� This has lead to desirable features� as discussed above� Like HOM�
the coverage masks do not contain depth information and the algorithm in �Gre��� uses
a BSP�tree for depth�ordering of polygons� Our algorithm has no restriction in terms
of rendering the polygons front to back� Rather it only needs a conservatively esti�
mated boundary between the occluders and potential occludees� which is represented
by the depth estimation bu	er� Hierarchical tiling is tightly coupled with polygon scan�
conversion and has to be signi�cantly modi�ed to deal with non�polygonal objects� such
as curved surfaces or textured billboards� Our algorithm does not directly deal with
low�level rendering but utilizes existing graphics systems� Thus it is readily applicable
to di	erent types of objects so long as the graphics system can render them� Hierarchical
tiling requires special�purpose hardware for real�time performance�

� Future Work and Conclusion

In this paper we have presented a visibility culling algorithm for general models that
achieves signi�cant speedups for interactive walkthroughs on current graphics systems�
It is based on hierarchical occlusion maps� which represent an image space fusion of all
the occluders� The overall algorithm is relatively simple� robust and easy to implement�
We have demonstrated its performance on a number of large models�

There are still several areas to be explored in this research� We believe the most
important of these to be occlusion preserving simpli�cation algorithms� integration with
levels�of�detail modeling� and parallelization�

Occlusion Preserving Simpli�cation� Many models are densely tessellated� For
fast generation of occlusion maps� we do not want to spend considerable time in rendering
the occluders� As a result� we are interested in simplifying objects under the constraint
of occlusion preservation� This implies that the screen space projection of the simpli�ed
object should be a subset of that of the original object� Current polygon simpli�cation
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algorithms can reduce the polygon count while giving tight error bounds� but none of
them guarantees an occlusion preserving simpli�cation�

Integration with Level�of�Detail Modeling� To display large models at interac�
tive frame rates� our visibility culling algorithm needs to be integrated with level�of�detail
modeling� The latter involves polygon simpli�cation� texture�based simpli�cation and
dynamic tessellation of higher order primitives�

Parallelization� Our algorithm can be easily parallelized on multi�processor con�
�gurations� Di	erent processors can be used for view frustum culling� overlap tests
and depth tests� These tasks take a small fraction of the frame time for our current
applications� However� they can take signi�cant time on even larger models�
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(A) Dynamic Environment
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(B) City Model
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(C) Submarine AMR Model

with HOM without HOM

Figure �
 The speed�up obtained due to HOM on di	erent models� The left graphs
show the improvement in frame rate and the right graphs show the percentage of model
culled� The statistics were gathered over a path for each model���
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Figure �
 Average speed�up obtained due to HOM culling on di	erent models� The total
time to render each model without HOM culling is normalized to ����� Each bar shows
the percentage of time spent in di	erent stages of our algorithm�

Figure �
 City model with ������� polygons� Average speed�up obtained by our visibility
culling algorithm is about �ve�
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Figure ��
 Dynamic environment composed of dinosaurs and teapots� The total polygon
count is �������� The HOM algorithm achieves ��� times speed�up�
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Figure ��
 A top view of the auxiliary machine room of a submarine composed of �������
polygons� Average speed�up is about two due to occlusion culling�
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