
Visibility Culling Using Hierarchical

Occlusion Maps �

Hansong Zhang Dinesh Manocha Tom Hudson Kenny Ho�

Department of Computer Science

University of North Carolina

Chapel Hill� NC ������	
��

fzhangh�manocha�hudson�ho�g�cs�unc�edu

Abstract� We present hierarchical occlusion maps �HOM� for visibility culling on
complex models with high depth complexity� The culling algorithm uses an object space
bounding volume hierarchy and a hierarchy of image space occlusion maps� Occlusion
maps represent the aggregate of projections of the occluders onto the image plane� For
each frame� the algorithm selects a small set of objects from the model as occluders
and renders them to form an initial occlusion map� from which a hierarchy of occlusion
maps is built� The occlusion maps are used to conservatively cull away a portion of
the model not visible from the current viewpoint� The algorithm is applicable to all
models and makes no assumptions about the size� shape� or type of occluders� It has
been implemented on current graphics systems and has been applied to large models
composed of hundreds of thousands of polygons� In practice� it achieves signi�cant
speedup in interactive walkthroughs of models with high depth complexity�
Key Words and Phrases� visibility culling� interactive display� image pyramid� oc�
clusion culling� hierarchical data structures

� Introduction
Interactive display and walkthrough of large geometricmodels currently pushes the limits
of graphics technology� Environments composed of millions of primitives �e�g� polygons�
are not uncommon in applications such as simulation�based design of large mechani�
cal systems� architectural visualization� or walkthrough of outdoor scenes� Although
throughput of graphics systems has increased considerably over the years� the size and
complexity of these environments has been growing even faster� In order to display such
models at interactive rates� the rendering algorithms need to use techniques based on
visibility culling� levels�of�detail� texturing� etc� to limit the number of primitives ren�
dered in each frame� In this paper� we focus on conservative visibility culling algorithms�

�Supported in part by a Sloan fellowship� ARO Contract P�������MA� NSF grant CCR���	��
��
NSF grant CCR����
�	�� ONR contract N


	�����	�
���� ARPA contract DABT������C�

�� and
NSF�ARPA Science and Technology Center for Computer Graphics � Scienti�c Visualization NSF
Prime contract No� ���
�	��

�



Their goal is to cull away large portions of the environment not visible from the current
viewpoint�

Our criteria for an e	ective visibility culling algorithm are generality� interactive

performance� and signi�cant culling� Additionally� in order for it to be practical� it
should be implementable on current graphics systems and work well on large real�world
models� To the best of our knowledge� no earlier algorithm can achieve all these goals
simultaneously�

Main Contribution� In this paper� we present a new algorithm for visibility culling
in complex environments with high depth complexity� At each frame� the algorithm
carefully selects a small subset of the model as occluders and renders them to build
hierarchical occlusion maps �HOM�� The hierarchy is an image pyramid and each map
in the hierarchy is composed of pixels corresponding to rectangular blocks in the screen
space� The pixel value records the opacity of the block� The algorithm decomposes the
visibility test for an object into a conservative two�dimensional overlap test� performed
against the occlusion map hierarchy� and a conservative Z test to compare the depth�
The overall approach combines an object space bounding volume hierarchy �also useful
for view frustum culling� with the image space occlusion map hierarchy to cull away a
portion of the model not visible from the current viewpoint� Some of the main features
of the algorithm are


�� Generality� The algorithm requires no special structures in the model and places
no restriction on the types of occluders� The occluders may be polygonal objects�
curved surfaces� or even not be geometrically de�ned �e�g� a billboard��

�� Occluder Fusion� A key characteristic of the algorithm is the ability to combine

a �forest
 of small or disjoint occluders� rather than using only large occluders�
In most cases� the union of a set of occluders can occlude much more than what
each of them can occlude taken separately� This is very useful for large mechanical
CAD and outdoor models�

�� Signi�cant Culling� On high depth complexity models� the algorithm is able to
cull away a signi�cant fraction �up to ���� of the model from most viewpoints�

�� Portability� The algorithm can be implemented on most current graphics sys�
tems� Its main requirement is the ability to read back the frame�bu	er� The
construction of hierarchical occlusion maps can be accelerated by texture mapping
hardware� It is not susceptible to degeneracies in the input and can be parallelized
on multiprocessors�

�� E�ciency� The construction of occlusion maps takes a few milliseconds per frame
on medium� to high�end graphics systems� The culling algorithm achieves signif�
icant speedup in interactive walkthroughs of models with high depth complexity�
The algorithm involves no signi�cant preprocessing and is applicable to dynamic
environments�

�� Approximate Visibility Culling� Our approach can also use the hierarchy of
maps to perform approximate culling� By varying an opacity threshold parameter

�



Figure �
 Demonstration of our algorithm on the CAD model of a submarine�s auxiliary
machine room� The model has ������� polygons� The green lines outline the viewing
frustum� The blue color indicates objects selected as occluders� gray the objects not
culled by our algorithm and transparent red the objects culled away� For this particular
view� ����� of the model is culled�

the algorithm is able to �ll small transparent holes in the occlusion maps and
to cull away portions of the model which are visible through small gaps in the
occluders�

The resulting algorithm has been implemented on di	erent platforms �SGI Max
Impact and In�nite Reality� and applied to city models� CAD models� and dynamic
environments� It obtains considerable speedup in overall frame rate� In Figure � we
demonstrate its performance on a submarine�s Auxiliary Machine Room�

Organization
 The rest of the paper is organized in the following manner� We brie�y
survey related work in Section � and give an overview of our approach in Section ��
Section � describes occlusion maps and techniques for fast implementation on current
graphics systems� In Section � we describe the entire culling algorithm� We describe
its implementation and performance in Section �� Section � analyses our algorithm and
compares it with other approaches� Finally� in Section � we brie�y describe some future
directions�

�



� Related Work

Visibility computation and hidden surface removal are classic problems in computer
graphics �FDHF���� Some of the commonly used visibility algorithms are based on
Z�bu	er �Cat��� and view�frustum culling �Cla��� GBW���� Others include Painter�s
Algorithm �FDHF��� and area�subdivision algorithms �War��� FDHF����

There is signi�cant literature on visible surface computation in computational geom�
etry� Many asymptotically e�cient algorithms have been proposed for hidden surface
removal �Mul��� McK���� See �Dor��� for a recent survey� However� the practical utility
of these algorithms is unclear at the moment�

E�cient algorithms for calculating the visibility relationship among a static group of
�D polygons from arbitrary viewpoints have been proposed based on the binary space�
partitioning �BSP� tree �FKN���� The tree construction may involve considerable pre�
processing in terms of time and space requirements for large models� In �Nay���� Naylor
has given an output�sensitive visibility algorithm using BSPs� It uses a �D BSP tree to
represent images and presents an algorithm to project a �D BSP tree� representing the
model in object space� into a �D BSP tree representing its image�

Many algorithms structure the model database into cells or regions� and use a com�
bination of o	�line and on�line algorithms for cell�to�cell visibility and the conservative
computation of the potentially visible set �PVS� of primitives �ARB��� TS��� LG����
In particular� Teller et al� �TS��� Tel��� TH��� have presented analytic algorithms for
cell�to�cell visibility and also applied them to e�cient calculation of form factors for ra�
diosity� Such approaches have been successfully used to visualize architectural models�
where the division of a building into discrete rooms lends itself to a natural division of
the database into cells� It is not apparent that cell�based approaches can be generalized
to an arbitrary model�

Other algorithms for densely�occluded but somewhat less�structured models have
been proposed by Yagel and Ray �YR���� They used regular spatial subdivision to
partition the model into cells and describe a �D implementation� However� the resulting
algorithm is very memory�intensive and does not scale well to large models�

Object space algorithms for occlusion culling in general polygonal models have been
presented by Coorg and Teller �CT��a� CT��b� and Hudson et al� �Hu���� These algo�
rithms dynamically compute a subset of the objects as occluders and use them to cull
away portions of the model� In particular� �CT��a� CT��b� compute an arrangement
corresponding to a linearized portion of an aspect graph and track the viewpoint within
it to check for occlusion� �Hu��� use shadow frusta and fast interference tests for oc�
clusion culling� All of them are object�space algorithms and the choice of occluder is
restricted to convex objects or simple combination of convex objects �e�g� two convex
polytope sharing an edge�� These algorithms are unable to combine a �forest
 of small
non�convex or disjoint occluders to cull away large portions of the model�

A hierarchical Z�bu	er algorithm combining spatial and temporal coherence has been
presented in �GKM��� GK��� Gre���� It uses two hierarchical data structures
 an octree
and a Z�pyramid� The algorithm exploits coherence by performing visibility queries on
the Z�pyramid and is very e	ective in culling large portions of high�depth complexity
models� However� most current graphics systems do not support the Z�pyramid capa�

�



bility in hardware� and simulating it in software can be relatively expensive� In �GK����
Greene and Kass used a quadtree data structure to test visibility throughout image�space
regions for anti�aliased rendering�

More recently� Greene �Gre��� has presented a hierarchical tiling algorithm using
coverage masks� It uses an image hierarchy named a �coverage pyramid
 for visibility
culling� Traversing polygons from front to back� it can process densely occluded scenes
e�ciently and is well suited to anti�aliasing by oversampling and �ltering�

For dynamic environments� Sudarsky and Gotsman �SG��� have presented an output�
sensitive algorithm which minimizes the time required to update the hierarchical data
structure for a dynamic object and minimize the number of dynamic objects for which
the structure has to be updated�

A number of techniques for interactive walkthrough of large geometric databases have
been proposed� Refer to �Br��� for a recent survey� A number of commercial systems like
Performer �RH���� used for high performance graphics� and Brush �SBM����� used for
visualizing architectural and CAD models� are available� They use techniques based on
view�frustum culling� levels�of�detail� etc�� but have little support for occlusion culling
on arbitrary models�

The structure of hierarchical occlusion maps is similar to some of the hierarchies that
have been proposed for images� such as image pyramids �TP���� MIP maps �Wil���� Z�
pyramids �GKM���� coverage pyramids �Gre���� and two�dimensional wavelet transforms
like the non�standard decomposition �GBR��� SDS����

� Overview

In this paper we present a conservative solution to the visibility problem� Given a scene
database and a viewpoint� our algorithm culls a subset of the objects not visible� The
heart of the algorithm is a hierarchy of occlusion maps� which records the aggregate
projection of occluders onto the image plane at di	erent resolutions� We use occlusion
maps because they can be built quickly and have several unique properties �described
later in the paper�� The use of occlusion maps re�ects a decomposition of the visibil�
ity problem into two sub�problems
 a two�dimensional overlap test and a depth test�
The former decides whether the screen space projection of the potential occludee lies
completely within the screen space projection of the union of all occluders� The latter
determines whether or not the potential occludee is behind the occluders� We use occlu�
sion maps for the overlap tests� and a depth estimation bu�er for the conservative depth
test� In the conventional Z�bu	er algorithm �as well as in the hierarchical Z�bu	er algo�
rithm�� the overlap test is implicitly performed as a side e	ect of the depth comparison
by initializing the Z�bu	er with large numbers�

The algorithm renders the occluders at each frame and builds a hierarchy �pyramid�
of occlusion maps� In addition to the model database� the algorithmmaintains a separate
occluder database� which is derived from the model database as a preprocessing step�
Both databases are represented as bounding volume hierarchies� The rendering pipeline
with our algorithm incorporated is illustrated in Figure �� The shaded blocks indicate
new stages introduced due to our algorithm� For each frame� the pipeline executes in

�



Occluder
Scene

Database

Viewing
Frustum
Culling

Rendering

Build Occlusion
Map Hierarchy

Real
Scene

Database

Viewing
Frustum
Culling HOM Culling

Occluder
Selection

Figure �
 Modi�ed graphics pipeline showing our algorithm� The shaded blocks indicate
components unique to culling with hierarchical occlusion map�

two major phases

�� Construction of the Occlusion Map Hierarchy� The occluders are selected

from the occluder database and rendered to build the occlusion map hierarchy� This
involves


� View�frustum culling� The algorithm traverses the bounding volume hierarchy
of the occluder database to �nd occluders lying in the viewing frustum�

� Occluder selection� The algorithm selects a subset of the occluders lying in the
viewing frustum� It utilizes temporal coherence between successive frames�

� Occluder rendering and depth estimation� The selected occluders are ren�
dered with special shading parameters to form an image in the framebu	er which is
the highest resolution occlusion map� A depth estimation bu	er is built to record
the depth of the occluders�

� Building the Hierarchical Occlusion Maps� After occluders are rendered�
the algorithm recursively �lters the rendered image down by averaging blocks of
pixels� This process can be accelerated by texture mapping hardware on many
current graphics systems�

�� Visibility Culling with Hierarchical Occlusion Maps� Given an occlusion
map hierarchy� the algorithm traverses the bounding volume hierarchy of the model
database to perform visibility culling� The main components of this stage are


� View�frustum Culling� The algorithm applies standard view�frustum culling to
the model database�

�



� Depth Comparison� For each potential occludee� the algorithm conservatively
checks whether it is behind the occluders�

� Overlap test with Occlusion Maps� The algorithm traverses the occlusion
map hierarchy to conservatively decide if each potential occludee�s screen space
projection falls completely within the opaque areas of the maps�

Only objects that fail one of the latter two tests �depth or overlap� are rendered�
Our approach shares a number of characteristics with earlier work� This includes

dynamically selecting the occluders� as in �CT��b� CT��a� and �Hu���� and using a
combination of object space and image space hierarchy� as in �GKM��� and �Gre����
Di	erences between their approaches and our approach are highlighted in Section ��

� Occlusion Maps

In this section� we present occlusion maps� algorithms using texture mapping hardware
for fast construction of the hierarchy of occlusion maps� and state a number of properties
of occlusion maps which are used by the visibility culling algorithm�

When an opaque object is projected to the screen� the area of its projection is made
opaque� The opacity of a block on the screen is de�ned as the ratio of the sum of
the opaque areas in the block to the total area of the block� An occlusion map is a
two�dimensional array in which each pixel records the opacity of a rectangular block of
screen space� Any rendered image can have an accompanying occlusion map which has
the same resolution and stores the opacity for each pixel� In such a case� the occlusion
map is essentially the � channel �FDHF��� of the rendered image �assuming � values
for objects are set properly during rendering�� though generally speaking a pixel in the
occlusion map can correspond to a block of pixels in the screen space� Our hierarchical
occlusion maps have a number of similarities to and di	erences from coverage pyramids
�Gre���� as discussed in Section ����

��� Image Pyramid

Given the lowest level occlusion map� the algorithm constructs from it a hierarchy of oc�
clusion maps �HOM� by recursively applying the average operator to rectangular blocks
of pixels� This operation forms an image pyramid as shown in Figure �� The resulting
hierarchy represents the occlusion map at multiple resolutions� It greatly accelerates the
overlap test and is used for approximate culling� In the rest of the paper� we follow the
convention that the highest resolution occlusion map of a hierarchy is at level ��

The algorithm �rst renders the occluders into an image� which forms the lowest�level
and highest resolution occlusion map� This image represents an image�space fusion of
all occluders in the object space� The occlusion map hierarchy is built by recursively
�ltering from the highest�resolution map down to some minimal resolution �e�g� �� ���
The highest resolution need not match that of the image of the model database� Using
a lower image resolution for rendering occluders may lead to inaccuracy for occlusion
culling near the edges of the objects� but it speeds up the time for constructing the

�



hierarchy� Furthermore� if hardware multi�sampled anti�aliasing is available� the lowest�
level occlusion map has more accuracy� This is due to the fact that the anti�aliased
image in itself is already a �ltered down version of a larger super�sampled image on
which the occluders were rendered�

Figure �
 The hierarchy of occlusion maps� This particular hierarchy is created by recur�
sively averaging over � blocks of pixels� The outlined square marks the correspondence
of one top�level pixel to pixels in the other levels� The image also shows the rendering
of the torus to which the hierarchy corresponds�

��� Fast Construction of the Hierarchy

When �ltering is performed on � � � blocks of pixels� hierarchy construction can be
accelerated by graphics hardware that supports bilinear interpolation of texture maps�
The averaging operator for ��� blocks is actually a special case of bilinear interpolation�
More precisely� the bilinear interpolation of four scalars or vectors v��v��v��v� is


�



��� ���� � ��v�� ��� � ��v�� ��v� � �� � ���v��

where � � � � �� � � � � � are the weights� In our case� we use � � � � ��� and
this formula produces the average of the four values� Thus� by carefully setting the
texture coordinates� we can �lter an �N � �N occlusion map to N � N by drawing a
two dimensional rectangle of size N �N � texturing it with the �N � �N occlusion map�
and reading back the rendered image as the N �N occlusion map� Figure � illustrates
this process�

The graphics hardware typically needs some setup time for the required operations�
When the size of the map to be �ltered is relatively small� setup time may dominate
the computation� In such cases� the use of texture mapping hardware may slow down
the computation of occlusion maps rather than accelerate it and hierarchy building is
faster on the host CPU� The break�even point between hardware and software hierarchy
construction varies with di	erent graphics systems�

�BM��� have presented a technique for generating mipmaps by using a hardware
accumulation bu	er� We did not use this method because the accumulation bu	er is
less commonly supported in current graphics systems than texture mapping�

��� Properties of Occlusion Maps

The hierarchical occlusion maps for an occluder set have several desirable properties
for accelerating visibility culling� The visibility culling algorithm presented in Section �
utilizes these properties�

�� Occluder Fusion� Occlusion maps represent the fusion of small and possibly
disjoint occluders� No assumptions are made on the shape� size� or geometry of the
occluders� Any object that is renderable can serve as an occluder�

�� Hierarchical Overlap Test� The hierarchy allows us to perform a fast overlap
test in screen space for visibility culling� This test is described in more detail in Section
����

	� High�level Opacity Estimation� The opacity values in a low�resolution oc�
clusion map can give an estimate of the opacity values in higher�resolution maps� For
instance� if a pixel in a higher level map has a very low intensity value� it implies that
almost all of its descendant pixels have low opacities� i�e� there is a low possibility of
occlusion� This is due to the fact that occlusion maps are based on the average op�
erator rather than the minimum or maximum operators� This property allows for a
conservative early termination of the overlap test�


� Approximate Visibility Culling� The hierarchy provides a natural method
for approximate occlusion culling� It may be used to cull away portions of the model
visible only through small gaps in or among occluders� A high opacity value of a pixel
in a low resolution map implies that most of its descendant pixels are opaque� The
algorithm uses the opacity threshold parameter to control the degree of approximation�
More details are given in Section ����

�



Framebuffer
(Originally the

rendered image of
the occluder scene)

Copy
framebuffer to

the texture
memory

Render square half of
the current size with

proper texture
coordinates

Read framebuffer
for occlusion map

Figure �
 Use of texture�mapping hardware to build occlusion maps

� Visibility Culling with Hierarchical OcclusionMaps

An overview of the visibility culling algorithm has been presented in Section �� In this
section� we present detailed algorithms for overlap tests with occlusion maps� depth
comparison� and approximate culling�

��� Overlap Test with Occlusion Maps

The two�dimensional overlap test of a potential occludee against the union of occluders
is performed by checking the opacity of the pixels it covers in the occlusion maps� An
exact overlap test would require a scan�conversion of the potential occludee to �nd out
which pixels it touches� which is relatively expensive to do in the software� Rather� we
present a simple� e�cient� and conservative solution for the overlap test�

For each object in the viewing frustum� the algorithm conservatively approximates
its projection with a screen�space bounding rectangle of its bounding box� This rectangle
covers a superset of the pixels covered by the actual object� The extremal values of the
bounding rectangle are computed by projecting the corners of the bounding box� The
main advantage of using the bounding rectangle is the reduced cost of �nding the pixels
covered by a rectangle compared to scan�converting general polygons�

The algorithm uses the occlusion map hierarchy to accelerate the overlap test� It
begins the test at the level of the hierarchy where the size of a pixel in the occlusion
map is approximately the same size as the bounding rectangle� The algorithm examines
each pixel in this map that overlaps the bounding rectangle� If any of the overlapping
pixels is not completely opaque �� the algorithm recursively descends from that pixel
to the next level of the hierarchy and checks all of its sub�pixels that are covered by
the bounding rectangle� If all the pixels checked are completely opaque� the algorithm
concludes that the occludee�s projection is completely inside that of the occluders� If
not� the algorithm conservatively concludes that the occludee may not be completely
obscured by the occluders� and it is rendered�

�By de�nition� a pixel is completely opaque if its value is above or equal to the opacity threshold�
which is de�ned in Section 
���

��



The algorithm supports early termination in overlap tests� If the opacity of a pixel
in a low�resolution map is too small� there is small probability that we can �nd high
opacity values even if we descend into the sub�pixels� So the overlap test stops and
concludes that the object is not occluded� The transparency thresholds are used to
de�ne lower�bounds on opacity below which traversal of the hierarchy is terminated�

��� Depth Comparison

Occlusion maps do not contain depth information� They provide a necessary condition
for occlusion in terms of overlap tests in the image plane� but do not detect whether
an object is in front of or behind the occluders� The algorithm manages the depth
information separately to complete the visibility test� In this section� we propose two
algorithms for depth comparison�

����� Single Z plane

One of the simplest ways to manage the depth is to use a single Z plane� It is based
on de�ning a plane parallel to and beyond the near plane � This plane separates the
occluders from the potential occludees so that any object lying beyond the plane is
farther away than any occluder� As a result� an object which is contained within the
projection of the occluders and lies beyond the parallel plane is completely occluded�
This is an extremely simple and conservative method which gives a rather coarse bound
for the depth values of all occluders�

V
ie

w
er

A
B

C

D

E

F

Figure �
 Distance criterion for dynamic selection

��



����� Depth Estimation Bu�er

The depth estimation bu	er is a software bu	er that provides a more general solution
for conservatively estimating the depth of occluders� Rather than using a single plane to
capture the depth of the entire set of occluders� the algorithm partitions the screen�space
and uses a separate plane for each region of the partition� By using a separate depth
for each region of the partition� the algorithm obtains a �ner measure of the distances
to the occluders� The depth estimation bu	er essentially is general�purpose software Z
bu	er that records the farthest distances instead of the nearest�

An alternative to using the depth estimation bu	er might be to read the accurate
depth values back from a hardware Z bu	er after rendering the occluders� This approach
was not taken mainly because it involves further assumptions of hardware features �i�e�
there is a hardware Z�bu	er� and we are able read Z�values reasonably fast in a easily�
usable format��

Construction of the depth estimation bu�er� The depth estimation bu	er is
built at every frame� which requires determining the pixels to which the occluders project
on the image plane� Scan�converting the occluders to do this would be unacceptably
expensive� As we did in constructing occlusion maps� we conservatively estimate the
projection and depth of an occluder by its screen�space bounding rectangle and the Z
value of its bounding volume�s farthest vertex� The algorithm checks each bu	er entry
covered by the rectangle for possible updates� If the rectangle�s Z value is greater than
the old entry� the entry is updated� This process is repeated for all occluders�

Conservative Depth Test� To perform the conservative depth test on a potential
occludee� it is approximated by the screen space bounding rectangle of its bounding box
�in the same manner as in overlap tests�� which is assigned a depth value the same as that
of the nearest vertex on the bounding box� Each entry of the depth estimation bu	er
covered by the rectangle is checked to see if any entry is greater than the rectangle�s Z
value� If this is the case then the object is conservatively regarded as being partly in
front of the union of all occluders and thus must be rendered�

The cost of the conservative Z�bu	er test and update� though far cheaper than
accurate operations� can still be expensive as the resolution of the depth estimation
bu	er increases� Furthermore� since we are performing a conservative estimation of the
objects� scree space extents� there is a point where increasing resolution of the depth
estimation bu	er does not help increase the accuracy of depth information� Normally
the algorithm uses only coarse�grain resolution �e�g� �� � ����

��� Occluder Selection

At each frame� the algorithm selects an occluder set� The optimal set of occluders is
exactly the visible portion of the model� Finding this optimal set is the visible surface
computation problem itself� Another possibility is to pre�compute global visibility in�
formation for computing the useful occluders at every viewpoint� The fastest known
algorithm for computing the e	ects on global visibility due to a single polyhedron with
m vertices can take O�m� logm� time in the worst case �GCS����

We present algorithms to estimate a set of occluders that are used to cull a signi�cant

��



Figure �
 Demonstration of approximate culling� The blue rectangles highlight the holes
in the occlusion maps� The holes dissolve as we go up in the hierarchy� The numbers
on the left and right hand sides of the occlusion maps are the opacity thresholds used
by the occlusion culling algorithm to generate the left and right images� respectively� In
the right image� the algorithm culls away ��� more of the model�

fraction of the model� We perform preprocessing to derive an occluder database from
the model� At runtime the algorithm dynamically selects a set of occluders from that
database�

��	�� Building the Occluder Database

The goal of the pre�processing step is to discard objects which do not serve as good
occluders from most viewpoints� We use the following criteria to select good occluders
from the model database


� Size� Small objects will not serve as good occluders unless the viewer is very close
to them�

� Redundancy� Some objects� e�g� a clock on the wall� provide redundant occlusion
and are removed from the database�

� Rendering Complexity� Objects with a high polygon count or rendering com�
plexity are not preferred� as scan�converting them may take considerable time and
it a	ects the overall frame rate�

��	�� Dynamic Selection

At runtime� the algorithm selects a set of objects from the occluder database� The
algorithm uses a distance criterion� size� and temporal coherence to select occluders�

The single Z�plane method for depth comparison� presented in Section ������ is also
an occluder selection method� All objects within the Z�plane are occluders�

When the algorithm uses the depth estimation bu	er� it dynamically selects occluders
based on a distance criterion and a limit �L� on the number of occluder polygons� These
two variables may vary between frames as a function of the overall frame rate and

��



percentage of model culled� Given L� the algorithm tries to �nd a set of good occluders
whose total polygon count is less than L�

The algorithm considers each object in the occluder database lying in the viewing
frustum� The distance between the viewer and the center of an object�s bounding volume
is used as an estimate of the distance from the viewer to the object� The algorithm sorts
these distances� and selects the nearest objects as occluder until their combined polygon
count exceeds L� This works well for most situations� except when a good occluder
is relatively far away� One such situation has been shown in Figure �� The distance
criterion will select C� D� E� F � etc� as occluders� but L will probably be exceed
before A and B are selected� Thus� we lose signi�cant occlusion that would have been
contributed by A and B� In other words� there is a hole in the occlusion map which
decreases the culling rate�

We use a feedback mechanism to handle this problem� making use of temporal co�
herence� If the culling rate and frame rate from the previous frame are too low� we
examine pixels in the lowest�resolution occlusion map �normally � � �� for existence of
major holes� i�e� pixel values that are lower than some threshold� Simple heuristics are
used to combine such pixels into as few rectangular regions as possible� We next �nd
occluders that project to these regions� A sub�frustum lying within the view frustum is
formed by the region with the lowest average opacity and the viewing point� Occluders
which intersect this frustum and have not been selected in the last frame are sorted by
distance and the nearest ones are selected until a polygon count �some fraction of L� is
exceeded� After selecting these 
hole��lling
 occluders� the algorithm chooses the rest
of the occluders by the standard occluder selection criteria� At the end of the frame�
if we observed signi�cant increase in culling rate over the last frame� we append the

hole��lling
 occluders into a queue� Occluders in the queue are always selected� The
queue is considered full if the total polygon count of the occluders in the queue exceeds
some �xed limit� Attempts to add an object into a full queue causes the object at the
head of the queue to be removed�

��� Approximate Visibility Culling

An additional feature of our algorithm is to perform approximate visibility culling� which
ignores objects only visible through small holes in or among the occluders� This ability
is based on an inherent property of HOM that it naturally represents the combined
occluder projections at di	erent levels of details�

In the process of �ltering maps to build the hierarchy� a pixel in a low resolution map
can obtain high opacity value even if a small number of its descendant pixels have low
opacity� Intuitively� a small group of low�opacity pixels �a 
hole
� in a high�resolution
map can dissolve as the average operation �which involves high opacity values from
neighboring pixels� is recursively applied to build lower�resolution maps�

The opacity value above which the pixel is considered completely opaque is called
the opacity threshold� which is by default ���� The visibility culling algorithm varies the
degree of approximation by changing the opacity thresholds� As the threshold is lowered�
the algorithm becomes more approximate� This e	ect of the opacity threshold is based
on the fact that if a pixel is considered completely opaque� the culling algorithm does not

��



go into the descendent pixels for further opacity checking� If the opacity a pixel in a low�
resolution map is not ��� �because some of the pixel�s descendents have low opacities��
but is still higher than the opacity threshold assigned to that map� the culling algorithm
does not descend to the sub�pixels to �nd low opacities� In e	ect this means that some
small holes in higher�resolution maps are ignored�

Approximate visibility is useful because we don�t expect to see manymeaningful parts
of the model through small holes in or among the occluders� In practice� culling such
portions of the models does not create noticeable visual artifacts� Omitting such holes
can signi�cantly increase the culling rate� To have similar degrees of approximations at
di	erent levels of maps� the opacity threshold should go up as map resolution goes up�
In Figure �� we show the impact of varying the opacity threshold on an environment
with a �forest
 of small occluders�

��� Dynamic Environments

The algorithm easily extends to dynamic environments� As no static bounding volume
hierarchy may be available� the algorithm uses oriented bounding boxes around each
object� The occluder selection algorithm involves no pre�processing� so the occluder
database is exactly the model database� The oriented bounding boxes are used to
construct the depth estimation bu	er as well as to perform the overlap test with the
occlusion map hierarchy�

� Implementation and Performance

We have implemented the algorithm as part of a walkthrough system� which is based on
OpenGL and currently runs on SGI platforms� Signi�cant speed�ups in frame rates have
been observed on di	erent models� In this section� we discuss several implementation
issues and discuss its performance on SGI Max Impacts and In�nite Reality platforms�

��� Implementation

As the �rst step in creating the occlusion map hierarchy� occluders are rendered in a
���� ��� viewport in the back framebu	er� in full white color with lighting and texture
mapping turned o	� Anyone of the three color channels of the resulting image can serve
as the highest�resolution occlusion map on which the hierarchy is based� An alternate
method could be rendering the occluders with the original color and shading parameters
and use the � channel of the rendered image to construct the initial map� However�
for constructing occlusion maps we do not need a �realistic
 rendering of the occluders�
which may be more expensive� In most cases the resolution of ���� ��� is smaller than
that of the �nal rendering of the model� As a result� it is possible to have artifacts
in occlusion� In practice� if the �nal image is rendered at a resolution of ���� � �����
rendering occluders at ������� is a good trade�o	 between accuracy and time required
to �lter down the image in building the hierarchy�

��



To construct the occlusion map hierarchy� we recursively average � � � blocks of
pixels using the texture mapping hardware as well as the host CPU� The resolution of
the lowest�resolution map is typically � � �� The break�even point between hardware
and software hierarchy construction �as described in Section ���� varies with di	erent
graphics systems� For SGI Max Impacts� we observed the shortest construction time
when the algorithm �lters from ��� to ��� � ��� using texture�mapping hardware� and
from ������� to ����� and �nally down to ��� on the host CPU� For In�nite Reality�
which has faster pixel transfer rates� the best performance is obtained by �ltering from
��� � ��� to ��� �� using the hardware and using the host CPU thereafter� Hierarchy
construction time is about � milliseconds for the Max Impacts and � milliseconds for
the In�nite Reality� with a small variance �around ��� milliseconds� between frames�

The implementation of depth estimation bu	er is optimized for block�oriented query
and updates� The hierarchical overlap test is straight�forward to implement� It is rela�
tively harder to optimize as it is recursive in nature�

��� Performance

We demonstrate the performance of the model on three environments� These are


� City Model� It is composed of di	erent models and has ���� ��� polygons� A
bird�s eye view of the model has been shown in Figure ��

� Dynamic Environment� It is composed of dinosaurs and teapots each undergo�
ing independent random motion� The total polygon count is ���� ���� It has been
shown in Figure � and Fig� ���

� Submarine Auxiliary Machine Room 
AMR�� It is a real�world CAD model
obtained from industrial sources� The model has ���� ��� polygons� Di	erent
views of the model are shown in Figure � and Figure ���

As mentioned earlier� our algorithm uses a bounding volume hierarchy �i�e� a scene
graph� for both the original model database as well as the occluder database� Each
model we used is originally a collection of polygons with no structure information� We
construct an axis�aligned bounding box hierarchy for each database�

For the dynamic environment and the city model� we use the model database itself
as the occluder database� without any pre�processing for static occluder selection� For
the AMR model� the pre�processing yields an occluder database of ���� ��� polygons�
The algorithm removes many objects that has little potential of being a good occluder
�like the bolts on the diesel engine� thin pipes etc�� from the original model� Further�
most of these parts are densely tessellated� making them to expensive to be directly
used as occluders� We use the simpli�ed version of the parts which are produced by
algorithms in �Cohen���� Although many algorithms of this kind give good error bounds
on the simpli�ed model� they do not guarantee that the projection of the simpli�ed
object lies within that of the original� Therefore� visibility artifacts may be introduced
by the simpli�ed occluders� We use very tight error bounds so that so that artifacts are
rarely noticeable�

��



The performance of the algorithms has been highlighted in Figure �� The graphs on
the left show the frame rate improvement� while the graphs on the right highlights the
percentage of the model culled at every frame� The performance of the city model was
generated on the Max Impact while the other two were rendered on the In�nite Reality�
The actual performance varies due to two reasons


�� Di	erent models have varying depth complexities� Furthermore� the percentage of
occlusion varies with the viewpoint�

�� The ability of the occluder selection algorithm to select the �right
 subset of oc�
cluder� The performance of the greedy algorithm� e�g� distance based criterion�
varies with the model distribution and the viewpoint�

The occluder polygon count budget �L� per frame is important for the performance
of the overall algorithm� If too few occluders are rendered� most of the pixels in the
occlusion map have low opacities and the algorithm is not able to cull much� On the other
hand� if too many occluder polygons are rendered� they may take a signi�cant percentage
of the total frame time and slow down the rendering algorithm� The algorithm starts
with an initial guess on the polygon count and adaptively modi�es it based on the
percentage of the model culled and frame rate� If the percentage of the model culled
is low� it increases the count� If the percentage is high and the frame rate is low� it
decreases the count�

Average time spent in di	erent stages of the algorithm� occluder selection and ren�
dering� hierarchy generation� occlusion culling and �nal rendering� have been shown in
Figure �� The average time to render the model without occlusion culling is normalized
to ����� In these cases� the average time in occluder rendering varies between �������

� Analysis and Comparison

In this section we analyze some of the main features of our algorithm and compare it
with other approaches�

Our algorithm is generally applicable to all models and obtains signi�cant culling
when there is high depth complexity� This is mainly due to its use of occlusion maps to
combine the occluders in the image space� The extensive use of screen space bounding
rectangles as an approximation of the object�s screen space projection makes the overlap
tests and depth tests fast and cheap�

In terms of hardware assumptions� the algorithm requires only the ability to read
back the framebu	er� Texture mapping with bilinear interpolations� when available� can
be directly used to accelerate the construction of the occlusion map hierarchy�

In general� if the algorithm is spending a certain percentage of the total frame time
in occluder rendering� HOM generation and culling �depth test and overlap test�� it
should at least cull away a similar percentage of the model so as to justify the overhead
of occlusion culling� If a model under some the viewing conditions does not have su��
cient occlusion� the overall frame rate may decrease due to the overhead� in which case
occlusion culling should be turned o	�

��



��� Comparison to Object Space Algorithms

Work on cells and portals�ARB��� TS��� LG��� addresses a special class of densely oc�
cluded environments where there are plenty of cell and portal structures� as in an in�door
architectural model� �ARB��� TS��� pre�precesses the model to identify potentially vis�
ible set of primitives for each cell� �LG��� developed a dynamic version which eliminates
the pre�processing� These methods works very well for the particular environment� but
are not applicable to models without cell�portal structures�

Our algorithm works without modi�cation for environments with cells and portals�
but occluder selection can be optimized for these environments� The cell boundaries
can be used to form the occluder database� As an alternative� we can �ll a viewport
with white pixels and then render the portals in black to form the occlusion map� In
general however� we do not expect to outperform the specialized algorithms in cell�port
environments�

Two di	erent object space solutions for more general models have been proposed by
�CT��b� CT��a� and �Hu���� They dynamically choose polygons and convex objects �or
simple convex combination of polygons� as occluders and use them to cull away invisible
portions of the model� However� many models do not have single big convex occluders�
In such cases� merging small� irregular occluders is critical for signi�cant culling� which
is an di�cult task in the object space� Our algorithm lies between the object space and
the image space and the occluder merging problem is solved in image space�

��� Comparison with Hierarchical Z	bu
er Algorithm

In many ways� we present an alternative approach to hierarchical Z�bu	er visibility
�GKM���� The main algorithm presented in �GKM��� performs updates of the Z�bu	er
hierarchy as geometry is rendered� It assumes special�purpose hardware for fast depth
updating and querying to obtain interactive performance� In terms of potential� we
believe it is perhaps the most powerful and e	ective algorithm for visibility culling�
However� we are not aware of any hardware implementation�

There is a possible variation of hierarchical Z�bu	er algorithm which selects occlud�
ers� renders them� reads back the depth bu	er once per frame� builds the Z�pyramid�
and use the screen�space bounding boxes for fast culling� �The algorithm proposed
in �GKM��� uses the exact projection of octree nodes� which requires software scan�
conversion�� In this case� the main di	erence between our approach and the possible
variation of hierarchical Z�bu	er reduces to that between the properties of the occlusion
map hierarchy and the Z pyramid�

The major advantage of the Z hierarchy is that it has the depth values� which we
need to manage separately for hierarchical occlusion maps �Section ����� On the other
hand� the occlusion map hierarchy has several unique features� These are based on the
fact HOM use an average operator� whereas the Z hierarchy use a minimumor maximum
operator�

�� The construction of HOM has readily�available hardware support on many graph�
ics systems� Further� if �ltering is performed in software� cost of the average
operator is smaller than the minimum�maximum operator �due to no branching
instructions��

��



�� HOM supports early termination in the hierarchical test by using a transparency
threshold �Section ���� and approximate occlusion culling at di	erent resolutions
by using an opacity threshold �Section �����

�� A very low opacity pixel in the higher�level �low�resolution� occlusion map implies
that there is insu�cient occlusion in the corresponding lower�level map� Not only
is this information used for early termination of the hierarchical test� but also used
to adaptively adjust the selection criterion used in the occluder selection algorithm�

��� Comparison with Hierarchical Tiling with Coverage Masks

Hierarchical polygon tiling �Gre��� tiles polygons in front�to�back order and uses a �cov�
erage
 pyramid for visibility culling� The coverage pyramid and hierarchical occlusion
maps serve the same purpose in that they both record the aggregate projections of
objects� �In this sense� our method has more resemblance to hierarchical tiling than
hierarchical Z�bu	er�� However� a pixel in a mask in the coverage pyramid has only
three values �covered� vacant or active�� while a pixel in an occlusion map has a contin�
uous opacity value� This has lead to desirable features� as discussed above� Like HOM�
the coverage masks do not contain depth information and the algorithm in �Gre��� uses
a BSP�tree for depth�ordering of polygons� Our algorithm has no restriction in terms
of rendering the polygons front to back� Rather it only needs a conservatively esti�
mated boundary between the occluders and potential occludees� which is represented
by the depth estimation bu	er� Hierarchical tiling is tightly coupled with polygon scan�
conversion and has to be signi�cantly modi�ed to deal with non�polygonal objects� such
as curved surfaces or textured billboards� Our algorithm does not directly deal with
low�level rendering but utilizes existing graphics systems� Thus it is readily applicable
to di	erent types of objects so long as the graphics system can render them� Hierarchical
tiling requires special�purpose hardware for real�time performance�

� Future Work and Conclusion

In this paper we have presented a visibility culling algorithm for general models that
achieves signi�cant speedups for interactive walkthroughs on current graphics systems�
It is based on hierarchical occlusion maps� which represent an image space fusion of all
the occluders� The overall algorithm is relatively simple� robust and easy to implement�
We have demonstrated its performance on a number of large models�

There are still several areas to be explored in this research� We believe the most
important of these to be occlusion preserving simpli�cation algorithms� integration with
levels�of�detail modeling� and parallelization�

Occlusion Preserving Simpli�cation� Many models are densely tessellated� For
fast generation of occlusion maps� we do not want to spend considerable time in rendering
the occluders� As a result� we are interested in simplifying objects under the constraint
of occlusion preservation� This implies that the screen space projection of the simpli�ed
object should be a subset of that of the original object� Current polygon simpli�cation

��



algorithms can reduce the polygon count while giving tight error bounds� but none of
them guarantees an occlusion preserving simpli�cation�

Integration with Level�of�Detail Modeling� To display large models at interac�
tive frame rates� our visibility culling algorithm needs to be integrated with level�of�detail
modeling� The latter involves polygon simpli�cation� texture�based simpli�cation and
dynamic tessellation of higher order primitives�

Parallelization� Our algorithm can be easily parallelized on multi�processor con�
�gurations� Di	erent processors can be used for view frustum culling� overlap tests
and depth tests� These tasks take a small fraction of the frame time for our current
applications� However� they can take signi�cant time on even larger models�

	 Acknowledgements

We are grateful to Fred Brooks� Jon Cohen� Anselmo Lastra� Ming Lin� Turner Whitted
and members of UNC Walkthrough project for productive discussions� The auxiliary
machine room model was provided by Greg Angelini� Jim Boudreaux� and Ken Fast at
Electric Boat� a subsidiary of General Dynamics�

References

�ARB��� J� Airey� J� Rohlf� and F� Brooks� Towards image realism with interactive
update rates in complex virtual building environments� In Symposium on

Interactive �D Graphics� pages ������ �����

�BM��� D� Blythe and T� McReynolds Programming with OpenGL
 Advanced Sig�

graph��� course notes� �����

�Br��� R� Brechner et al� Interactive walkthrough of large geometric databases�
Siggraph��� course notes� �����

�Car��� L� Carpenter� The A�bu	er� an antialiased hidden surface method� Proc	 of
ACM Siggraph� pages �������� �����

�Cat��� E� Catmull� A subdivision algorithm for computer display of curved surfaces�
PhD thesis� University of Utah� �����

�Cla��� J�H� Clark� Hierarchical geometric models for visible surface algorithms�
Communications of the ACM� ������
�������� �����

�Co��� J� Cohen et al� Simpli�cation envelopes� In Proc	 of ACM Siggraph���� pages
�������� �����

�CT��a� S� Coorg and S� Teller� A spatially and temproally coherent object space
visibility algorithm� Technical Report TM ���� Laboratory for Computer
Science� Massachusetts Institute of Technology� �����

��



�CT��b� S� Coorg and S� Teller� Temporally coherent conservative visibility� In Proc	

of 
�th ACM Symposium on Computational Geometry� �����

�Dor��� S� E� Dorward� A survey of object�space hidden surface removal� Internat	

J	 Comput	 Geom	 Appl	� �
�������� �����

�FDHF��� J� Foley� A� Van Dam� J� Hughes� and S� Feiner� Computer Graphics� Prin�

ciples and Practice� Addison Wesley� Reading� Mass�� �����

�FKN��� H� Fuchs� Z� Kedem� and B� Naylor� On visible surface generation by a priori
tree structures� Proc	 of ACM Siggraph� �����
�������� �����

�GBR��� R� Coifman G� Beylkin and V� Rokhlin� Fast wavelet transforms and nu�
merical algorithms
 I� Communications of Pure and Applied Mathematics�
�����
�������� �����

�GBW��� B� Garlick� D� Baum� and J� Winget� Interactive viewing of large geometric
databases using multiprocessor graphics workstations� Siggraph��
 course

notes� Parallel Algorithms and Architectures for �D Image Generation� �����

�GCS��� Z� Gigus� J� Canny� and R� Seidel� E�ciently computing and representing
aspect graphs of polyhedral objects� IEEE Transactions on Pattern Analysis

and Machine Intelligence� �����
�������� �����

�GK��� N� Greene and M� Kass� Error�bounded antialiased rendering of complex
environments� In Proc	 of ACM Siggraph� pages ������ �����

�GKM��� N� Greene� M� Kass� and G� Miller� Hierarchical z�bu	er visibility� In Proc	

of ACM Siggraph� pages �������� �����

�Gre��� N� Greene� Hierarchical Rendering of Complex Environments� PhD thesis�
University of California at Santa Cruz� �����

�Gre��� N� Greene� Hierarchical polygon tiling with coverage masks� In Proc	 of ACM
Siggraph� pages ������ �����

�Hu��� T� Hudson et al� Accelerated occlusion culling using shadow frusta� Technical
Report TR������� Department of Computer Science� University of North
Carolina� �����

�LG��� D� Luebke and C� Georges� Portals and mirrors
 Simple� fast evaluation of
potentially visible sets� In ACM Interactive �D Graphics Conference� Mon�
terey� CA� �����

�McK��� M� McKenna� Worst�case optimal hidden�surface removal� ACM Trans	

Graph	� �
������ �����

�Mul��� K� Mulmuley� An e�cient algorithm for hidden surface removal� Computer

Graphics� �����
�������� �����

��



�Nay��� B� Naylor� Partitioning tree imge representation and generation from �d
geometric models� In Proc	 of Graphics Interface� pages ������� �����

�RH��� J� Rohlf and J� Helman� Iris performer
 A high performance multiprocessor
toolkit for realtime �d graphics� In Proc	 of ACM Siggraph� pages ��������
�����

�SBM���� B� Schneider� P� Borrel� J� Menon� J� Mittleman� and J� Rossignac� Brush
as a walkthrough system for architectural models� In Fifth Eurographics

Workshop on Rendering� pages �������� July �����

�SDS��� E� Stollnitz� T� Derose� and D� Salesin� Wavelets for Computer Graphics�
Morgan Kaufmann Publishers� �����

�SG��� O� Sudarsky and C� Gotsman� Output sensitive visibility algorithms for dy�
namic scenes with applications to virtual reality� Computer Graphics Forum�
�����
������� ����� Proc� of Eurographics����

�Tel��� S� J� Teller� Visibility Computations in Densely Occluded Polyheral Environ�

ments� PhD thesis� CS Division� UC Berkeley� �����

�TH��� S� Teller and P� Hanrahan� Global visibility algorithms for illumination com�
putations� In Proc	 of ACM Siggraph� pages �������� �����

�TP��� S� Tanimoto and T� Pavlidis� A hierarchical data structure for picture pro�
cessing� Computer Graphics and Image Processing� ����
�������� �����

�TS��� S� Teller and C�H� Sequin� Visibility preprocessing for interactive walk�
throughs� In Proc	 of ACM Siggraph� pages ������ �����

�War��� J� Warnock� A hidden�surface algorithm for computer generated half�tone
pictures� Technical Report TR ����� NTIS AD���� ���� Department of Com�
puter Science� University of Utah� �����

�Wil��� L� Williams� Pyramidal parametrics� ACM Computer Graphics� pages �����
�����

�YR��� R� Yagel and W� Ray� Visibility computations for e�cient walkthrough of
complex environments� Presence� ����
����� �����

��



0

2

4

6

8

10

12

0 100 200 300 400
Frame #

Fram
es/Sec

-20

0

20

40

60

80

100

0 100 200 300 400
Frame #

Total %
 culling

(A) Dynamic Environment

0

2

4

6

8

10

0 100 200 300
Frame #

Fram
es/Sec

20
30
40
50
60
70
80
90

100

0 100 200 300
Frame #

Total %
 culling

(B) City Model

1

2

3

4

5

0 50 100
Frame #

Fram
es/Sec

50

60

70

80

90

0 50 100
Frame #

Total %
 culling

(C) Submarine AMR Model

with HOM without HOM

Figure �
 The speed�up obtained due to HOM on di	erent models� The left graphs
show the improvement in frame rate and the right graphs show the percentage of model
culled� The statistics were gathered over a path for each model���



0 20 40 60 80 100

Submarine AMR

Dynamic
Environment

City Model

Frame-time without HOM normalized to 100%

Occluder Rendering HOM generation HOM culling Rendering

Figure �
 Average speed�up obtained due to HOM culling on di	erent models� The total
time to render each model without HOM culling is normalized to ����� Each bar shows
the percentage of time spent in di	erent stages of our algorithm�

Figure �
 City model with ������� polygons� Average speed�up obtained by our visibility
culling algorithm is about �ve�

��



Figure ��
 Dynamic environment composed of dinosaurs and teapots� The total polygon
count is �������� The HOM algorithm achieves ��� times speed�up�

��



Figure ��
 A top view of the auxiliary machine room of a submarine composed of �������
polygons� Average speed�up is about two due to occlusion culling�

��


