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Abstract— The scheduling of mixed-criticality implicit-deadline
sporadic task systems on identical multiprocessor platforms
is considered, when inter-processor migration is permitted. A
scheduling algorithm is derived and proved correct, and its
properties investigated. Theoretical analysis (in the form of both
a speedup factor and sufficient schedulability conditions) as well
as extensive simulation experiments serve to demonstrate its
effectiveness.
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I. INTRODUCTION

There is an increasing trend in embedded systems towards
integrating multiple functionalities on a common platform,
as is evidenced by industry-wide initiatives such as IMA
(Integrated Modular Avionics) for aerospace, and AUTOSAR
(AUTomotive Open System ARchitecture) for the automotive
industry. Such integrated platforms may co-host applications
of different degrees of importance or criticalities, with some
of the more safety-critical applications subject to mandatory
certification by statutory Certification Authorities (CAs.) Real-
time scheduling theory has only recently begun addressing
the resulting challenge of implementing safety-critical func-
tionalities that are subject to certification, and less critical
functionalities that do not need to be certified, on a common
platform (see, e.g, [12], [7], [5], [4]).

In order to certify a system as being correct, the certi-
fication authority (CA) mandates certain assumptions about
the worst-case behavior of the system during run-time; these
assumptions are typically far more conservative than the
assumptions that the system designer would use during the
process of designing, implementing, and testing the system
if subsequent certification were not required. (For instance,
the worst-case execution time (WCET) estimate used by the
CA to characterize a complex piece of code is likely to be
more pessimistic (i.e., larger) than the WCET estimate used
by the system designer.) However, while the CA is only
concerned with the correctness of the safety-critical part of the
system the system designer is responsible for ensuring that the
entire system is correct, including the non-critical parts. The
scheduling problem then becomes one of coming up with a
single scheduling strategy that meets two separate goals: (i)
certification of the high criticality jobs under more pessimistic
assumptions and (ii) feasibility of all the jobs (including the
low criticality ones) under the designer’s, less pessimistic,
assumptions.

This research. To our knowledge, most prior algorithmic
research on mixed-criticality scheduling for certifiability has
focused on uniprocessor systems. However, safety-critical (and
other) embedded systems are increasingly coming to be im-
plemented on multicore CPU’s, which are typically scheduled
using multiprocessor scheduling algorithms rather than unipro-
cessor ones. Furthermore, as these multicore CPU’s become
more complex and sophisticated, their behavior becomes less
uniform and predictable and shows greater variation; as a
consequence, the pessimism that a CA’s more conservative
WCET-analysis tool expresses vis a vis a system-designer’s
tool is only going to increase and become more pronounced.
Motivated by these and other reasons, we seek to study
mixed-criticality scheduling on multiprocessors in this paper.
Specifically, we consider the global preemptive scheduling
of mixed-criticality implicit-deadline sporadic task systems
upon identical multiprocessor platforms – these terms will
be defined, and the precise scope of our work will be de-
lineated, in Section II. Our approach extends a uniprocessor
mixed-criticality scheduling algorithm called EDF-VD [6] to
multiprocessors, by applying a previously-proposed multipro-
cessor global scheduling algorithm called fpEDF [2] that was
designed for non mixed-criticality systems.

Organization. The remainder of this paper is organized
as follows. In Section II we formally define the workload
and platform models assumed in this work. In Section III
we briefly describe some prior work that we will be using
— specifically, the multiprocessor global scheduling algo-
rithm fpEDF [2], that was designed for non mixed-criticality
systems. In Section IV we provide an overview of our algo-
rithm; a detailed description follows in Section V. We provide
a worst-case characterization of the algorithm’s performance
in Section VI. In Section VII we describe some pragmatic
improvements that can be made to the algorithm described in
Sections IV-V; although these improvements do not change
the worst-case characterization of our algorithm, they do sig-
nificantly improve its performance on typical task systems. We
illustrate this fact by presenting the results of some simulation
experiments in Section VIII.

II. MODEL AND DEFINITIONS

As stated in Section I above, we are studying the global
preemptive scheduling of mixed-criticality implicit-deadline
sporadic task systems on a multiprocessor platform consisting
of multiple identical processors. By global scheduling, we
mean that any job may execute on any processor, and that



a preempted job may later resume execution on any proces-
sor. In common with much prior research on multiprocessor
scheduling, we assume that there is no cost associated with
preemptions and inter-processor migration.

To our knowledge, this is one of the first papers to consider
mixed-criticality scheduling on multiprocessors. The only
prior publications that we are aware of on this topic are

1) [6, Section 4], which considers (1) the global multipro-
cessor scheduling of a finite collection of independent
jobs; and (2) the partitioned multiprocessor scheduling
of implicit-deadline sporadic task systems.

2) [11], which considers a very simply workload model (all
jobs have the same release time and deadline) and deals
primarily with implementation issues.

We now formally define the mixed-criticality (henceforth often
referred to as MC) workload model that is used in this paper,
and explain terms and concepts used throughout the remainder
of this document. As with traditional (i.e., non MC) real-time
systems, we will model a MC real-time system τ as consisting
of a finite specified collection of MC sporadic tasks, each of
which will generate a potentially infinite sequence of MC jobs.

MC jobs. Each job is characterized by a 5-tuple of param-
eters: Ji = (ai, di, χi, ci(LO), ci(HI)), where
• ai ∈ R+ is the release time.
• di ∈ R+ is the deadline. We assume that di ≥ ai.
• χi ∈ {LO, HI} denotes the criticality of the job. A HI-

criticality job (a Ji with χi = HI) is one that is subject
to certification, whereas a LO-criticality job (a Ji with
χi = LO) is one that does not need to be certified.

• ci(LO) specifies the worst case execution time (WCET)
estimate of Ji that is used by the system designer (i.e.,
the WCET estimate at the LO criticality level).

• ci(HI) specifies the worst case execution time (WCET)
estimate of Ji that is used by the certification authorities
(i.e., the WCET estimate at the HI criticality level). We
assume that

– ci(HI) ≥ ci(LO) (i.e., the WCET estimate used by
the system designer is never more pessimistic than
the one used by the CA), and

– ci(HI) = ci(LO) if χi = LO (i.e., a LO-criticality
job is aborted if it executes for more than its LO-
criticality WCET estimate1).

The MC job model has the following semantics. Job Ji
is released at time ai, has a deadline at di, and needs to
execute for some amount of time γi. However, the value of
γi is not known beforehand, but only becomes revealed by
actually executing the job until it signals that it has completed
execution. If Ji signals completion without exceeding ci(LO)
units of execution, we say that it has exhibited LO-criticality
behavior; if it signals completion after executing for more than
ci(LO) but no more than ci(HI) units of execution, we say that
it has exhibited HI-criticality behavior. If it does not signal

1We assume that the run-time system provides support for ensuring that
jobs do not execute for more than a specified amount; see, e.g., [4] for a
discussion of this issue.

χk Ck(LO) Ck(HI) Tk
τ1 LO 2 2 6
τ2 HI 1 2 10
τ2 HI 2 10 20

TABLE I
AN EXAMPLE MIXED-CRITICALITY IMPLICIT-DEADLINE SPORADIC TASK

SYSTEM.

completion upon having executed for ci(HI) units, we say that
its behavior is erroneous.

MC implicit-deadline sporadic tasks. Each implicit-
deadline sporadic task in the MC model is characterized by
a 4-tuple of parameters: τk = (χk, Ck(LO), Ck(HI), Tk), with
the following interpretation. Task τk generates a potentially
infinite sequence of jobs, with successive jobs being released
at least Tk time units apart. Each such job has a deadline that
is Tk time units after its release. The criticality of each such
job is χk, and it has LO-criticality and HI-criticality WCET’s
of Ck(LO) and Ck(HI) respectively.

A MC sporadic task system is specified as a finite collection
of such sporadic tasks. As with traditional (non-MC) systems,
such a MC sporadic task system can potentially generate
infinitely many different MC instances (collections of jobs),
each instance being obtained by taking the union of one
sequence of jobs generated by each sporadic task.

Utilizations. The utilization of a (regular, i.e., non-MC)
implicit-deadline sporadic task denotes the ratio of its WCET
to its period; the utilization of a task system denotes the sum
of the utilizations of all the tasks in the system. We now define
analogous concepts for mixed-criticality sporadic task systems.
That is, we let Uk(LO) and Uk(HI) denote the LO-criticality
and HI-criticality utilizations of task τk:

Uk(LO) := Ck(LO)/Tk and Uk(HI) := Ck(HI)/Tk

Let τ = {τ1, τ2, . . . , τn} denote a MC implicit-deadline
sporadic task system. For each of x and y in {LO, HI}, we
define a utilization parameter as follows:

Uyx (τ) =
∑

τi∈τ∧χi=x

Ui(y) (1)

Thus for example, U LO
HI (τ) denotes the sum of the utilizations

of the HI-criticality tasks in τ , under the assumption that each
job of each task executes for no more than its LO-criticality
WCET.

Example 1: Consider the task system depicted in Table I.
For this task system,

U LO
LO (τ) = 2/6 = 0.33

U HI
LO(τ) = 2/6 = 0.33

U LO
HI (τ) = 1/10 + 2/20 = 0.2

U HI
HI (τ) = 2/10 + 10/20 = 0.7

Scheduling MC sporadic task systems. A particular
implicit-deadline sporadic task system may generate different



instances of jobs during different runs. Furthermore, during
any given run each job comprising the instance may exhibit
LO-criticality, HI-criticality, or erroneous behavior. We define
an algorithm for scheduling implicit-deadline sporadic task
system τ to be correct if it is able to schedule every instance
generated by τ such that
• If all jobs exhibit LO-criticality behavior, then all jobs

receive enough execution between their release time and
deadline to be able to signal completion; and

• If any job exhibits HI-criticality behavior, then all HI-
criticality jobs receive enough execution between their
release time and deadline to be able to signal completion.

Note that if any job exhibits HI-criticality behavior, we
do not require any LO-criticality jobs (including those that
may have arrived before this happened) to complete by their
deadlines. This is an implication of the requirements of
certification: informally speaking, the system designer fully
expects that all jobs will exhibit LO-criticality behavior, and
hence is only concerned that they behave as desired under
these circumstances. The CA, on the other hand, allows for the
possibility that some jobs may exhibit HI-criticality behavior,
and requires that all HI-criticality jobs nevertheless meet their
deadlines.

III. ALGORITHM fpEDF [2]
Algorithm fpEDF [2] is a global EDF-based algorithm for

scheduling systems of non mixed-criticality implicit-deadline
sporadic tasks upon identical multiprocessor platforms. The
mixed-criticality scheduling algorithm that we present in the
following sections is based on Algorithm fpEDF; therefore, we
describe it here and provide a brief overview of some results
from [2].

Suppose that “regular” (i.e., non-MC) implicit-deadline
sporadic task system τ is to be scheduled on m unit-speed
processors. During run-time all jobs of tasks in τ that have
utilization greater than one-half are assigned highest priority,
and the remaining tasks’ jobs are assigned priorities according
to their deadlines (as in “regular” EDF).

Let Usum(τ) (respectively, Umax(τ)) denote the sum of the
utilizations (resp., the largest utilization) of the tasks in τ .
The schedulable utilization of a multiprocessor scheduling
algorithm on m speed-s processors is defined to be the
largest number such that any task system τ with Usum(τ)
no larger than this number and Umax(τ) no larger than s, is
correctly scheduled by the algorithm on the m processors.
The following result characterizes the performance guarantees
made by Algorithm fpEDF:

Theorem 1 (Theorem 4 in [2]): Algorithm fpEDF has a
schedulable utilization of (m + 1)/2 upon m unit-speed
processors.

Since preemptive uniprocessor EDF is known [10] to have
a schedulable utilization equal to the speed of the processor
on which it is implemented, the contrapositive of Theorem 1
yields the following corollary.

Corollary 1: If a task system cannot be scheduled by Al-
gorithm fpEDF on m unit-speed processors, then it cannot be

scheduled by preemptive uniprocessor EDF on a processor of
speed (m+ 1)/2.

IV. AN OVERVIEW OF OUR SCHEDULING ALGORITHM

We now have the foundations in place to describe our
proposed algorithm for the global scheduling of implicit-
deadline sporadic mixed-criticality task systems on preemptive
identical multiprocessor platforms. In this section, we provide
a high-level overview of the algorithm, and attempt to com-
municate the intuition behind our algorithm design by means
of a very simple example. We will fill in the details with
a more comprehensive description in Section V, and prove
some important properties in Section VI. We reiterate that our
algorithm is a generalization to multiprocessor platforms, of
the preemptive uniprocessor algorithm EDF-FD first proposed
in [6].

Let τ = {τ1, . . . , τn} denote the MC implicit-deadline
sporadic task system that is to be scheduled on m unit-speed
preemptive processors. Our approach to scheduling τ can be
thought of as a three-phased one:

1) There is an initial pre-processing phase that occurs prior
to run-time.

2) During run-time, jobs are initially dispatched in the
expectation that the behavior of the system is going to
be a LO-criticality one: no job will execute for more than
its LO-criticality WCET.

3) If some job does execute beyond its LO-criticality WCET
without signaling that it has completed execution, the
dispatching algorithm is modified accordingly and the
algorithm enters its optional third phase.

We now discuss each of the three phases.
During the pre-processing phase, a schedulability test is per-

formed to determine whether τ can be successfully scheduled
by our algorithm or not. If τ is deemed schedulable, then an
additional parameter, which we call a modified period denoted
T̂i, is computed for each HI-criticality task τi ∈ τ . We will
see that it is always the case that T̂i ≤ Ti.

Initial run-time scheduling is done according to the Algo-
rithm fpEDF described in Section III above. Since fpEDF
is defined for regular, rather than mixed-criticality, task sys-
tems, we must map the mixed-criticality tasks in τ to reg-
ular tasks. This is done as follows: each LO-criticality task
τk = (χk, Ck(LO), Ck(HI), Tk) in τ is mapped to a regular
implicit-deadline task (Ck(LO), Tk), while each HI-criticality
task τk = (χk, Ck(LO), Ck(HI), Tk) in τ is mapped to a
regular implicit-deadline task (Ck(LO), T̂k), where the T̂k’s
are the modified periods computed during the pre-processing
phase. It follows from the sustainability property [3], [1] of
Algorithm fpEDF that if Algorithm fpEDF is able to schedule
this regular implicit-deadline sporadic task system then it
is able to schedule all LO-criticality behaviors of the MC
implicit-deadline task system τ .

If some job does execute beyond its LO-criticality WCET
without signaling that it has completed execution, we enter the
third phase of the algorithm, and the following changes occur.



1) All currently-active LO-criticality jobs are immediately
discarded; henceforth, no LO-criticality job will receive
any execution.

2) Subsequent run-time scheduling of the HI-criticality tasks
(including their jobs that are currently active) are done
according to Algorithm fpEDF. In order to do so, we
must once again map these HI-criticality tasks to regular
implicit-deadline tasks. This is done as follows: each HI-
criticality MC task τk = (χk, Ck(LO), Ck(HI), Tk) in τ is
mapped to a regular implicit-deadline task (Ck(HI), Tk−
T̂k).

We now demonstrate these three phases via a simple exam-
ple: scheduling a system of three implicit-deadline mixed-
criticality tasks on a single preemptive processor. 2

Example 2: Suppose we wish to schedule the mixed-
criticality implicit-deadline sporadic task system depicted in
Table I, on a single unit-speed processor. We will see later
that the pre-processing phase determines that this task system
is schedulable by our algorithm on a single processor (m = 1),
and computes the following T̂k parameters for the HI-criticality
tasks τ2 and τ3:

T̂2 ← 3; T̂3 ← 6 .

During run time, jobs are initially scheduled by handing off the
regular task system {(2, 6), (1, 3), (2, 6)} to Algorithm fpEDF.
Observe that Usum = 2/6 + 1/3 + 2/6 = 1 for this system;
hence according to the optimality of preemptive uniprocessor
EDF [10], it is successfully scheduled on a single processor
by Algorithm fpEDF.

Now suppose some job executes for more than its LO-
criticality WCET. All currently-active jobs of the LO-criticality
task τ1 are immediately discarded, and no future jobs of this
task are admitted. Run-time dispatching is done by handing
off the regular task system {(2, 10−3 = 7), (10, 20−6 = 14)}
to Algorithm fpEDF. Since Umax = 10/14 ≈ 0.72 and
Usum = 2/7 +10/14 = 1 for this system it is also successfully
scheduled on a single processor by Algorithm fpEDF. In
particular, any currently active job of τ2 (τ3 respectively) is
immediately scheduled as a job with WCET C2(HI) = 2
(C3(HI) = 10, resp.) and a deadline that is T2 − T̂2 = 7
(T3 − T̂3 = 14, resp.) time-units in the future.

V. A DETAILED DESCRIPTION

We now provide a detailed description of our algorithm,
specifying what happens during the pre-processing phase –how
a system is deemed schedulable or not and how the modified
period parameters (the T̂k’s) are computed for schedulable
systems– and precisely how run-time job-dispatching decisions
are made.

A. The pre-processing step

Consider some execution of the mixed-criticality implicit-
deadline task system τ that exhibits HI-criticality behavior, i.e.,

2Although this is not a multiprocessor example, it serves to illustrate the
steps taken by the algorithm in a relatively simple manner.
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Fig. 1. A HI-criticality job arrives at time a, with deadline at d. It is scheduled
by Algorithm fpEDF using the modified deadline d̂, which is ≤ d. If no job
executes for more than its LO-criticality WCET, then this job can complete
by d̂. If only the HI-criticality jobs execute and each executes for up to its
HI-criticality WCET, then this job, if a HI-criticality one, can meet its deadline
by only executing over [d̂, d).

some job executes beyond its LO-criticality WCET without
signaling that it has completed execution. Let t∗ denote the
first time-instant at which some job executes for more than its
LO-criticality WCET without signaling that it has completed
— at t∗, therefore, the run-time system gets to know that
the current behavior of the system is a HI-criticality one. The
idea behind our algorithm is to ensure that there is sufficient
computing capacity available between this time-instant t∗ and
the deadline of each currently-active HI-criticality job, to be
able to execute all these jobs for up to their HI-criticality
WCET’s by their respective deadlines. This is ensured by the
manner in which the modified periods (the T̂k parameters) are
computed. We will compute modified period values to ensure
that the following two properties P1-P2 are satisfied:
P1. All jobs of all tasks will meet their modified deadlines in

any LO-criticality behavior of the system (i.e., if no job
executes beyond its LO-criticality WCET). That is, the
collection of “regular” (non-MC) tasks( ⋃

χi=LO

{
(Ci(LO), Ti)

})⋃( ⋃
χi=HI

{
(Ci(LO), T̂i)

})
(2)

is scheduled by Algorithm fpEDF to always meet all
deadlines on the available m unit-speed processors.

P2. If each HI-criticality job executes for no more than its
HI-criticality WCET and each LO-criticality job does not
execute at all then each HI-criticality job can meet its
(original) deadline by beginning execution at or after its
modified deadline. This is ensured by ensuring that the
collection of “regular” (non-MC) tasks⋃

χi=HI

{
(Ci(HI), Ti − T̂i)

}
(3)

can be scheduled by Algorithm fpEDF to always meet all
deadlines on the available m unit-speed processors.

In Section IV, we had stated that run-time scheduling
during both the second and the (optional) third phase are
done according to Algorithm fpEDF. We observe that in
the regular implicit-deadline task systems being scheduled by
Algorithm fpEDF during the second and third phases (i.e.,
prior to, and after, time-instant t∗), the periods of these regular
tasks are smaller than or equal to the periods of the MC
tasks that are mapped onto them. Hence it follows from the
sustainability property of Algorithm fpEDF that all deadlines
are met prior to time-instant t∗, and all deadlines are met



at “steady state” well after t∗ — i.e., once enough time has
elapsed beyond t∗ that only jobs of HI-criticality tasks that
arrived well after t∗ are active in the system. It remains to
show that jobs that are active at time-instant t∗ (see Figure 1),
as well as jobs that have arrived soon after t∗, are correctly
scheduled as well.

To see why this must be so, we note that each HI-criticality
job that had its modified deadline < t∗ must have already
signaled completion upon executing for at most its LO-
criticality WCET, since otherwise the HI-criticality nature of
the behavior would have been signaled prior to t∗ when such a
job failed to signal completion despite having executed for its
LO-criticality WCET. Therefore the modified deadline of each
HI-criticality job that is active —arrived but not yet signaled
completion— at time-instant t∗ must be ≥ t∗. By our choice
of modified deadlines and the sustainability property [3], [1]
of Algorithm fpEDF, Property P2 ensures that all such HI-
criticality jobs meet their original deadlines. As for the jobs
of each HI-criticality task τi that arrive after t∗, they, too
are scheduled with a scheduling deadline that is (Ti − T̂i)
after their release times; since they can meet these deadlines
under Algorithm fpEDF, it follows that they meet their actual
deadlines, which occur Ti time-units after their release times,
as well.

That, then, is the gist of the idea behind the preprocessing
phase. It remains to fill in the details, in particular by explain-
ing how the modified deadlines are computed such that the two
properties P1 and P2 are satisfied. The pre-processing phase
is described in pseudo-code form in Figure 2. We provide an
explanation of this pseudo-code below.

Step 1 checks to see whether Algorithm fpEDF can sched-
ule the system if each LO-criticality job executes for up to its
LO-criticality WCET, and each HI-criticality job executes for
up to its HI-criticality WCET. If so, then the system can be
scheduled directly by Algorithm fpEDF; else, Steps 2-3 are
executed.

In Step 2, a minimum “scaling factor” x is determined, such
that if all the HI-criticality tasks have their periods scaled by
this factor x then the regular implicit-deadline task system
obtained by combining these tasks with the LO-criticality
tasks would be successfully scheduled by Algorithm fpEDF.
The derivation of the value of x is as follows. According to
Theorem 1, Algorithm fpEDF can schedule any task system
with total utilization ≤ (m+ 1)/2 (recall that m denotes the
number of unit-speed processors). Since scaling the period of
each HI-criticality task by a factor x is equivalent to inflating
its utilization by a factor 1/x, for ensuring LO-criticality
schedulability by fpEDF we therefore need

U LO
LO (τ) +

U LO
HI (τ)

x
≤ m+ 1

2

⇔ U LO
HI (τ)

x
≤ m+ 1

2
− U LO

LO (τ)

⇔ x ≥ U LO
HI (τ)/

(m+ 1

2
− U LO

LO (τ)
)

This accounts for the first term in the “max.” The second term
is to ensure that scaling down the period of any HI-criticality
task by this factor x does not result in the task having its LO-
criticality WCET exceed its scaled-down period (equivalently,
the term Ci(LO)

xTi
becoming > 1 for some HI-criticality task

τi).
Step 3 determines whether the HI-criticality tasks can be

scheduled to meet all deadlines by Algorithm fpEDF once
the behavior of the system transits to HI-criticality (i.e., after
the time-instant t∗ at which some job is identified to have
executed for more than its LO-criticality WCET). If so, the
modified deadline parameters – the T̂i’s – are computed.

B. Run-time dispatching

During the execution of the system, jobs are selected for
execution according to the following rules:

1) There is a criticality level indicator Γ, initialized to LO.
2) While (Γ ≡ LO),

a) Suppose a job of some task τi ∈ τ arrives at time t,.
• if χi ≡ LO, the job is assigned a deadline equal to
t+ Ti.

• if χi ≡ HI, the job is assigned a deadline equal to
t+ T̂i.

b) At each instant the waiting job with earliest deadline
is selected for execution (ties broken arbitrarily).

c) If the currently-executing job executes for more than
its LO-criticality WCET without signaling completion,
then the behavior of the system is no longer a LO-
criticality behavior, and Γ := HI.

3) Once (Γ ≡ HI),
a) The deadline of each HI-criticality job that is currently

active is changed to its release time plus the unmodified
relative deadline of the task that generated it. That is, if
a job of τi that was released at some time t is active, its
deadline, for scheduling purposes, is henceforth t+Ti.

b) When a future job of τi arrives at some time t, it is
assigned a deadline equal to t+ Ti.

c) LO-criticality jobs will not receive any further exe-
cution. Therefore at each instant the earliest-deadline
waiting job generated by a HI-criticality task is selected
for execution(ties broken arbitrarily).

4) An additional rule could specify the circumstances when
Γ gets reset to LO. This could happen, for instance, if
no HI-criticality jobs are active at some instant in time.
(We will not discuss the process of resetting Γ := LO
any further in this document, since this is not relevant
to the certification process — LO-criticality certification
assumes that the system never exhibits any HI-criticality
behavior, while HI-criticality certification is not interested
in the behavior of the LO-criticality tasks.)

VI. PROPERTIES

As stated in Section I, our algorithm is essentially a general-
ization to multiprocessors of the uniprocessor mixed-criticality
scheduling algorithm EDF-VD (for Earliest Deadline First



Algorithm GLOBAL. Task system τ = {τ1, τ2, . . . τn} to be scheduled on m processors.
1) If the regular task system ⋃

i

{
(Ci(χi), Ti)

}
is deemed schedulable on the m processors by Algorithm fpEDF, then declare success and return.

2) x← max
(
U LO

HI (τ)/
(
m+1
2 − U LO

LO (τ)
)
,maxχi=HI

{
Ui(LO)

})
3) If the regular task system ⋃

χi=HI

{
(Ci(HI), (1− x)Ti)

}
is deemed schedulable on the m processors by Algorithm fpEDF, then

T̂i ← xTi for each HI-criticality task τi
declare success and return.

else declare failure and return.

Fig. 2. The preprocessing phase.

with Virtual Deadlines) of [6]. We now provide a brief
description of this algorithm.
Algorithm EDF-VD, like our algorithm, also computes a
modified period T̂i = xTi for every HI-criticality task τ , by
determining the smallest value for x such that the following
two collections of regular (non-MC) implicit-deadline sporadic
tasks

1)
(⋃

χi=LO

{
(Ci(LO), Ti)

})⋃(⋃
χi=HI

{
(Ci(LO), T̂i)

})
,

and
2)
⋃
χi=HI

{
(Ci(HI), Ti − T̂i)

}
are each (separately) EDF-schedulable on a unit-speed proces-
sor.3 If such an x cannot be determined, then EDF-VD declares
failure; else, it was shown in [6] that τ can be scheduled using
the run-time dispatching algorithm that we have described in
Section V-B above.

The following theorem concerning EDF-VD is proved
in [6].

Theorem 2 (from [6]): Any task system τ satisfying

U LO
LO (τ) + min

(
U HI

HI (τ),
U LO

HI (τ)

1− U HI
HI (τ)

)
≤ s (4)

is successfully scheduled by Algorithm EDF-VD on a preemp-
tive speed-s processor.
Using this theorem and Corollary 1, the following sufficient
schedulability condition can be derived for our multiprocessor
mixed-criticality scheduling algorithm:

Theorem 3: Any task system τ satisfying

U LO
LO (τ) + min

(
U HI

HI (τ),
U LO

HI (τ)

1− U HI
HI (τ)

)
≤ m+ 1

2
(5)

is successfully scheduled by our algorithm on m preemptive
unit-speed processors.

In [6], it was also shown that

3Observe that these conditions are exactly the ones that we have generalized
in order to come up with the conditions P1-P2 (Equations 2 and 3) in
Section V.

Theorem 4 (from [6]): Any task system τ satisfying

max
(
U LO

LO (τ) + U LO
HI (τ), U HI

HI (τ)
)
≤ s (6)

is successfully scheduled by Algorithm EDF-VD on a preemp-
tive speed-

(√
5+1
2 s

)
processor.

Once again, it follows as a consequence of this theorem and
Corollary 1 that

Theorem 5: Any task system τ satisfying

max
(
U LO

LO (τ) + U LO
HI (τ), U HI

HI (τ)
)
≤ m (7)

is successfully scheduled by our algorithm on m preemptive
speed-

(√
5 + 1

)
processors.

We can use Theorem 5 above to obtain a processor speedup
bound [9] for our multiprocessor scheduling algorithm:

Corollary 2: The processor speedup factor of our algorithm
is no larger than (

√
5 + 1). That is, any mixed-criticality task

system that can be scheduled in a certifiably correct manner on
m unit-speed processors by an optimal clairvoyant scheduling
algorithm can be scheduled by our algorithm on m speed-(√

5 + 1
)

processors.
Proof: Suppose that τ can be scheduled in a certifiably correct
manner on m unit-speed processors by an optimal clairvoyant
scheduling algorithm. It is necessary that its LO-criticality
utilization (U LO

LO (τ) + U LO
HI (τ)) be ≤ m, and that its HI-

criticality utilization (U HI
HI (τ)) also be ≤ m. The speedup result

immediately follows, by Theorem 5 above.

VII. PRAGMATIC IMPROVEMENTS

The algorithm in Figure 2 describes a technique for comput-
ing a scaling factor x; Theorem 3 details sufficient conditions
under which this scaling factor is guaranteed to yield a
certifiably correct scheduling strategy.

What happens, however, if the task system to be scheduled
does not satisfy the conditions of Theorem 3? In this case,
the algorithm in Figure 2 may fail to find a value for x that
results in a certifiably correct scheduling strategy. However,
such failure does not necessarily imply that an appropriate



Algorithm GLOBAL-PRAGMATIC. Task system τ = {τ1, τ2, . . . τn} to be scheduled on m processors.
1) If the regular task system ⋃

i

{
(Ci(χi), Ti)

}
is deemed schedulable on the m processors by Algorithm fpEDF, then declare success and return.

2) for each τi with χi = HI

a) x← 2Ci(LO)/Ti

b) If x < minχi=HI

(
Ci(LO)
Ti

)
or x ≥ 1 or x ≤ 0 then continue // Consider the next task

c) If both the regular task systems ( ⋃
χi=LO

{
(Ci(LO), Ti)

})⋃( ⋃
χi=HI

{
(Ci(LO), xTi)

})
and ⋃

χi=HI

{
(Ci(χi), (1− x)Ti)

}
are deemed schedulable on the m processors by Algorithm fpEDF, then

T̂i ← xTi for each HI-criticality task τi
declare success and return

else continue// Consider the next task
3) for each τi with χi = HI

a) x←
(
1− 2Ci(HI)/Ti

)
b) repeat Step 2b and Step 2c

4) Declare failure and return

Fig. 3. The improved preprocessing phase.

value of x does not exist; we may apply heuristic strategies
to attempt to determine such an x. One strategy would be
to apply exhaustive search: consider all values of x (at an
appropriate level of granularity), searching for one that causes
the properties P1 and P2 to be satisfied. A somewhat less
naive but computationally more efficient heuristic is described
in pseudo-code form in Figure 3, as the Algorithm GLOBAL-
PRAGMATIC. According to this heuristic, we iterate through
only those values for x that, for each τi with χi = HI, would
make the regular task (Ci(LO), xTi) or (Ci(HI), (1− x)Ti)
have utilization 1/2; for each such value of x, we test whether
properties P1 and P2 are satisfied. The algorithm returns
success upon finding the first such x for which P1 and P2
are both satisfied; if all these values of x fails either P1 or P2,
the algorithm returns failure. The statements in Section V on
properties P1 and P2 guarantees the correctness of Algorithm
GLOBAL-PRAGMATIC.

The idea of considering only those specific candidate values
for x can be briefly motivated as follows: In Algorithm fpEDF,
if the tasks whose jobs get highest priority are fixed, the
schedulability of the task system depends entirely on the
values of Usum and Umax. It can be shown that if the tasks
whose jobs are assigned highest priority are fixed, then these
two values change monotonically with x. Therefore we only
check the values on the boundary of monotonic intervals,
which are specifically, the values that change the assignment
of the tasks whose jobs are assigned highest priority. It

is evident that those are the values that make the regular
task (Ci(LO), xTi) or (Ci(HI), (1− x)Ti) have utilization
1/2, as we described above. Thus in Algorithm GLOBAL-
PRAGMATIC, we check these values to see if it is a valid
assignment of x; although this is not necessarily guaranteed
to always find an x that renders the system schedulable even if
one exists, it is computationally more efficient than exhaustive
search and our simulation evaluations (described in the next
section) indicate that it seems to perform quite well.

VIII. EVALUATION VIA SIMULATION

We have conducted a series of simulation experiments
to evaluate the effectiveness of Algorithm GLOBAL and
Algorithm GLOBAL-PRAGMATIC in finding certifiably cor-
rect scheduling strategies. Our experiments were conducted
upon randomly-generated task systems that were generated
according to (a slight modification of) the workload-generation
algorithm introduced by Guan et al. [8]. The input parameters
for our workload generation algorithm are as follows:

• Ubound: The desired value of the larger of LO-criticality
and HI-criticality utilization of the task system:

max
(
U LO

LO (τ) + U LO
HI (τ), U HI

HI (τ)
)

= Ubound (8)

• [UL, UU ]: Utilizations are uniformly drawn from this
range; 0 ≤ UL ≤ UU ≤ 1.



TASKGEN(P,UL, UU , Ubound, ZL, ZU )

� Let U(a, b) return a number uniformly drawn from [a, b]
1 i← 0
2 SL ← 0 � Current value of (U LO

LO + U LO
HI )

3 SH ← 0 � Current value of UHI
HI

4 repeat
5 i← i+ 1
6 uH ← U(UL, UU )
7 uL ← uH/U(ZL, ZU )
8 χi ← HI with prob. P ; LO with prob. (1− P )
9 if (χi ≡ LO)

10 then
Ui(LO)← min(uL, Ubound − SL)

11 SL ← SL + Ui(LO)
12 else

Ui(HI)← min(uH , Ubound − SH)
13 Ui(LO)← min(Ui(HI), uL, Ubound − SL)
14 SH ← SH + Ui(HI)
15 SL ← SL + Ui(LO)
16 until (max(SL, SH) ≥ Ubound)

Fig. 4. Pseudo-code for task generation procedure

• [ZL, ZU ]: The ratio of the HI-criticality utilization of a
task to its LO-criticality utilization is uniformly drawn
from this range; 1 ≤ ZL ≤ ZU .

• P : The probability that a task in a HI-criticality task;
0 ≤ P ≤ 1.

Gives these parameters, the task-generation algorithm initial-
izes the task system τ to be empty and repeatedly adds tasks τi,
i = 1, 2, . . ., until the utilization bound is met. The procedure
is described in pseudo-code form in Figure 4.

We used our simulation platform to investigate several
interesting questions concerning the behavior of our algorithm,
including the following:

1) Does the behavior depend significantly on whether the
LO-criticality system utilization (U LO

LO +U LO
HI ) and the HI-

criticality system utilization (U HI
HI ) take on similar or very

different values? This question is particularly interesting
since our speedup factor result (Corollary 2) depends only
upon the larger of the two utilizations, and is independent
of whether these utilization values are close to each other
or not.

2) How does increasing the ratio of HI-criticality to LO-
criticality utilization effect our algorithm? This is inves-
tigated by fixing all other parameters and varying the
upper bound ZU on the ratios of the utilizations. Larger
values of the ratio imply that obtaining WCET bounds at
greater levels of assurance results in increased pessimism;
this could reflect, for instance, the presence of more
advanced (and non-deterministic) features such as high-
speed cache, speculative out-of-order execution, etc., in
the CPUs.

In our experiments, we determined the fraction of randomly-
generated task systems that are deemed to be schedulable
by the algorithm under consideration, as a function of the

ratio (Ubound/m), where m denotes the number of unit-
speed processors in the platform (i.e., this ratio is the system
utilization normalized by the number of processors). Some
of our results are depicted graphically in Figures 5-11. In
each graph, the fraction of systems that were determined to
be schedulable is depicted on the y-axis, and the normalized
utilization on the x-axis. Each data-point was obtained by
randomly generating 1000 task systems, testing each for
schedulability according to the appropriate algorithm, and
calculating the fraction of systems deemed schedulable. The
parameters used in generating these task systems (other than
the normalized system utilization, which is depicted on the
x-axis) are provided in the caption of the graph; e.g., the task
systems for Figure 5 were generated using the parameters
UL = 0.05, UU = 0.75, ZL = 1, ZU = 8, and P =
0.5. For each set of parameters, we conducted simulations
on 2-processor, 4-processor, 8-processor, and 16-processor
platforms. Three algorithms were compared:

1) Regular EDF (i.e., EDF on the task system⋃
i{(Ci(χi), Ti)}) – this corresponds to “reserving”

capacity for a HI-criticality tasks according to its
HI-criticality WCET;

2) Algorithm GLOBAL (as depicted in Figure 2) ; and
3) Algorithm GLOBAL-PRAGMATIC (as depicted in Fig-

ure 3).
Since a graph containing all the data for a given combina-
tion of parameters (such as Figure 5) is too dense to be
visually parsed comfortably, we have split the information
in this graph into two graphs (for Figure 5, these are the
two graphs in Figure 6). The first graph in Figure 6 plots
the acceptance fractions for the three algorithms being com-
pared, for m = 4 processors; it is evident from this graph
that Algorithm GLOBAL-PRAGMATIC performs better than
Algorithm GLOBAL, which in turn performs significantly
better than regular EDF. (In this particular graph, for example,
for a normalized utilization equal to 0.5, the fractions of
schedulable systems were 0.684, 0.538, and 0.380 for the
three algorithms.) This same phenomenon was observed for
all the parameter-settings we considered, although the exact
amount of the improvement of one algorithm over the others
may have differed; consequently, for subsequent parameter
settings we only depict the results for the best of the algo-
rithms (GLOBAL-PRAGMATIC), for the different numbers
of processors considered.

A. Observations
Several trends are revealed by our simulation experiments.

It is evident that both our algorithms consistently exhibit
noticeable improvements over a simple EDF scheduler. We
do not seek to make quantitative claims about the degree of
such improvement based on simulation data, but we do notice
some trends.

1) When the average utilization percentage is smaller than
0.3, the task system is always schedulable. This obser-
vation matches our speed-up factor computation, since
1/(
√

5 + 1) ≈ 0.308.
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Fig. 5. UL = 0.05, UU = 0.75, ZL = 1, ZU = 8, P = 0.3

2) These improvements become more significant with in-
creasing value of ZU (i.e., as the ratio of the HI-
criticality WCET to LO-criticality WCET increases). The
intuitive explanation for this is that our algorithms take
more advantage from processing LO-criticality and HI-
criticality behaviors separately when the LO-criticality
and HI-criticality behaviors overlap less.

3) When Ci(HI) is close to Ci(LO), our algorithms are not
significantly superior to regular EDF. This is not unex-
pected: for such systems, there is not much difference
between the LO-criticality and HI-criticality behavior of
tasks, and hence reserving for the HI-criticality behavior
(which, in effect, is what regular EDF does) is not
inordinately expensive.

IX. CONCLUSIONS

Most prior scheduling-theoretic work on mixed-criticality
systems has focused on uniprocessor scheduling. However,
embedded real-time systems are increasingly coming to be im-
plemented upon multicore and multiprocessor platforms; this
motivates a need for the study of multiprocessor algorithms
for scheduling mixed-criticality systems.
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Fig. 9. UL = 0.05, UU = 0.75, ZL = 1, ZU = 8, P = 0.5
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Fig. 10. UL = 0.05, UU = 0.75, ZL = 1, ZU = 16, P = 0.1
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Fig. 11. UL = 0.3, UU = 0.8, ZL = 1, ZU = 8, P = 0.3

In this paper, we have taken a step towards meeting this
need: we have studied the global scheduling of implicit-
deadline mixed-criticality systems on identical multiprocessor
platforms. We have derived, and proved the correctness of,
an algorithm for scheduling such systems. We have derived
a sufficient schedulability condition, and a processor speedup
factor, for our algorithm. We have also conducted extensive
simulation experiments in an attempt to better understand the
behavior of our algorithm.
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